Cargando…
Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code
Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunit...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888411/ https://www.ncbi.nlm.nih.gov/pubmed/29644096 http://dx.doi.org/10.1093/ve/vey008 |
_version_ | 1783312515955949568 |
---|---|
author | Yinda, Claude Kwe Ghogomu, Stephen Mbigha Conceição-Neto, Nádia Beller, Leen Deboutte, Ward Vanhulle, Emiel Maes, Piet Van Ranst, Marc Matthijnssens, Jelle |
author_facet | Yinda, Claude Kwe Ghogomu, Stephen Mbigha Conceição-Neto, Nádia Beller, Leen Deboutte, Ward Vanhulle, Emiel Maes, Piet Van Ranst, Marc Matthijnssens, Jelle |
author_sort | Yinda, Claude Kwe |
collection | PubMed |
description | Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems. |
format | Online Article Text |
id | pubmed-5888411 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58884112018-04-11 Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code Yinda, Claude Kwe Ghogomu, Stephen Mbigha Conceição-Neto, Nádia Beller, Leen Deboutte, Ward Vanhulle, Emiel Maes, Piet Van Ranst, Marc Matthijnssens, Jelle Virus Evol Research Article Most human emerging infectious diseases originate from wildlife and bats are a major reservoir of viruses, a few of which have been highly pathogenic to humans. In some regions of Cameroon, bats are hunted and eaten as a delicacy. This close proximity between human and bats provides ample opportunity for zoonotic events. To elucidate the viral diversity of Cameroonian fruit bats, we collected and metagenomically screened eighty-seven fecal samples of Eidolon helvum and Epomophorus gambianus fruit bats. The results showed a plethora of known and novel viruses. Phylogenetic analyses of the eleven gene segments of the first complete bat rotavirus H genome, showed clearly separated clusters of human, porcine, and bat rotavirus H strains, not indicating any recent interspecies transmission events. Additionally, we identified and analyzed a bat bastrovirus genome (a novel group of recently described viruses, related to astroviruses and hepatitis E viruses), confirming their recombinant nature, and provide further evidence of additional recombination events among bat bastroviruses. Interestingly, picobirnavirus-like RNA-dependent RNA polymerase gene segments were identified using an alternative mitochondrial genetic code, and further principal component analyses suggested that they may have a similar lifestyle to mitoviruses, a group of virus-like elements known to infect the mitochondria of fungi. Although identified bat coronavirus, parvovirus, and cyclovirus strains belong to established genera, most of the identified partitiviruses and densoviruses constitute putative novel genera in their respective families. Finally, the results of the phage community analyses of these bats indicate a very diverse geographically distinct bat phage population, probably reflecting different diets and gut bacterial ecosystems. Oxford University Press 2018-03-30 /pmc/articles/PMC5888411/ /pubmed/29644096 http://dx.doi.org/10.1093/ve/vey008 Text en © The Author(s) 2018. Published by Oxford University Press. http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Research Article Yinda, Claude Kwe Ghogomu, Stephen Mbigha Conceição-Neto, Nádia Beller, Leen Deboutte, Ward Vanhulle, Emiel Maes, Piet Van Ranst, Marc Matthijnssens, Jelle Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title | Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title_full | Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title_fullStr | Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title_full_unstemmed | Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title_short | Cameroonian fruit bats harbor divergent viruses, including rotavirus H, bastroviruses, and picobirnaviruses using an alternative genetic code |
title_sort | cameroonian fruit bats harbor divergent viruses, including rotavirus h, bastroviruses, and picobirnaviruses using an alternative genetic code |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888411/ https://www.ncbi.nlm.nih.gov/pubmed/29644096 http://dx.doi.org/10.1093/ve/vey008 |
work_keys_str_mv | AT yindaclaudekwe cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT ghogomustephenmbigha cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT conceicaonetonadia cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT bellerleen cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT deboutteward cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT vanhulleemiel cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT maespiet cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT vanranstmarc cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode AT matthijnssensjelle cameroonianfruitbatsharbordivergentvirusesincludingrotavirushbastrovirusesandpicobirnavirusesusinganalternativegeneticcode |