Cargando…

32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA

BACKGROUND: The human brain is comprised of billions of neurons that form networks of connections within and between brain regions. These connections facilitate neuroplastic events that underlie learning and memory, critical aspects of cognitive function often perturbed in neuropsychiatric illnesses...

Descripción completa

Detalles Bibliográficos
Autores principales: Funk, Adam, Greis, Kenneth, Meller, Jarek, McCullumsmith, Robert
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888713/
http://dx.doi.org/10.1093/schbul/sby014.133
_version_ 1783312583260897280
author Funk, Adam
Greis, Kenneth
Meller, Jarek
McCullumsmith, Robert
author_facet Funk, Adam
Greis, Kenneth
Meller, Jarek
McCullumsmith, Robert
author_sort Funk, Adam
collection PubMed
description BACKGROUND: The human brain is comprised of billions of neurons that form networks of connections within and between brain regions. These connections facilitate neuroplastic events that underlie learning and memory, critical aspects of cognitive function often perturbed in neuropsychiatric illnesses. Neuronal signaling is mediated by fast and slow transmission events, encompassing receptors, ligands, ions, enzymes, and other substrates. These elements are spatially arranged in subcellular microdomains, facilitating juxtaposition of proteins that coordinate various biological processes. For example, synaptic transmission is modulated via release of neurotransmitter into the synaptic cleft, where receptors are activated and the postsynaptic cell modulated via electrical and chemical signals. The pre- and postsynaptic compartments include highly specialized protein clusters, with elegant and complex regulatory mechanisms that traffic proteins to and from these zones. In particular, postsynaptic densities are microdomains comprised of about 1000 unique proteins that are interacting with one another via specialized multipotent scaffolding molecule. Postsynaptic density-95 (PSD-95) is a multipotent scaffolding, trafficking, and clustering protein that links glutamate receptors, signaling molecules, and other structural proteins at postsynaptic sites. More than 95% of PSD-95 expression is localized to excitatory synapses, and it is the most abundant scaffolding protein within the postsynaptic density. Mounting genetic, proteomic, and pharmacological evidence converges on alterations in the postsynaptic density of excitatory synapses in subjects with schizophrenia. Cognitive and negative symptoms associated with dysfunction of limbic circuitry, including working memory and motivation, are particularly implicated by this mechanism. To investigate excitatory postsynaptic protein hubs in schizophrenia, we assessed the PSD-95 protein interactome from brain tissue of subjects with schizophrenia and controls. METHODS: Human brain tissue from fifteen subjects with schizophrenia and fifteen control subjects from the DLPFC was processed for affinity purification of PSD-95 protein complexes. We confirmed PSD-95 capture and enrichment from each sample using Western blot analyses. Samples were then pooled by region and assessed by mass spectrometry for a quality control step. Pooled samples were run in triplicate. Go versus nogo was based on finding more than 500 unique peptides in each pooled sample from each region. Next, individual samples were run through our mass spectrometry protocol in triplicate. We then subtracted any non-specifically captured peptides identified by our IgG control studies that were performed in parallel to PSD-95 affinity purification. Data were normalized within each of the mass spec runs to the most intense PSD-95 peptide. This PSD-95 peptide used for normalization was the same in every sample. Peptides that were present in at least 2 of 3 technical replicates were carried forward and subjected to quantile normalization. Peptides missing in a technical replicate were replaced by imputation, and the dataset subjected to unsupervised clustering. We also performed a semisupervised clustering protocol, non negative matrix factoring (NMF). Consensus signatures of 200 peptides were identified for each brain region, and subjected to traditional and alternative bioinformatics analyses to identify pathways, processes and compounds associated with the signatures for each brain region. RESULTS: Preliminary analyses indicate changes in the PSD-95 interactome consistent with diminished NMDA receptor signaling complex activity in schizophrenia, with lower levels of NMDA-subtype glutamate receptor subunits, as well as protein kinases associated with postsynaptic signaling in this complex. Specific biological pathways and processes identified include metabolic and inflammatory pathways. We will also present proteomic signatures generated from this dataset, and interrogate the iLINCS perturbagen database to identify drugs and genes that simulate or reverse this signature. DISCUSSION: Our preliminary data suggest that NMDA receptor function is compromised in schizophrenia. Additional work is needed to see if this is an effect of antipsychotic medications. Our proteomic findings extend the NMDA receptor hypothesis beyond the transcriptome, highlighting an important new approach for assessing abnormalities of synapses in postmortem brain.
format Online
Article
Text
id pubmed-5888713
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-58887132018-04-11 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA Funk, Adam Greis, Kenneth Meller, Jarek McCullumsmith, Robert Schizophr Bull Abstracts BACKGROUND: The human brain is comprised of billions of neurons that form networks of connections within and between brain regions. These connections facilitate neuroplastic events that underlie learning and memory, critical aspects of cognitive function often perturbed in neuropsychiatric illnesses. Neuronal signaling is mediated by fast and slow transmission events, encompassing receptors, ligands, ions, enzymes, and other substrates. These elements are spatially arranged in subcellular microdomains, facilitating juxtaposition of proteins that coordinate various biological processes. For example, synaptic transmission is modulated via release of neurotransmitter into the synaptic cleft, where receptors are activated and the postsynaptic cell modulated via electrical and chemical signals. The pre- and postsynaptic compartments include highly specialized protein clusters, with elegant and complex regulatory mechanisms that traffic proteins to and from these zones. In particular, postsynaptic densities are microdomains comprised of about 1000 unique proteins that are interacting with one another via specialized multipotent scaffolding molecule. Postsynaptic density-95 (PSD-95) is a multipotent scaffolding, trafficking, and clustering protein that links glutamate receptors, signaling molecules, and other structural proteins at postsynaptic sites. More than 95% of PSD-95 expression is localized to excitatory synapses, and it is the most abundant scaffolding protein within the postsynaptic density. Mounting genetic, proteomic, and pharmacological evidence converges on alterations in the postsynaptic density of excitatory synapses in subjects with schizophrenia. Cognitive and negative symptoms associated with dysfunction of limbic circuitry, including working memory and motivation, are particularly implicated by this mechanism. To investigate excitatory postsynaptic protein hubs in schizophrenia, we assessed the PSD-95 protein interactome from brain tissue of subjects with schizophrenia and controls. METHODS: Human brain tissue from fifteen subjects with schizophrenia and fifteen control subjects from the DLPFC was processed for affinity purification of PSD-95 protein complexes. We confirmed PSD-95 capture and enrichment from each sample using Western blot analyses. Samples were then pooled by region and assessed by mass spectrometry for a quality control step. Pooled samples were run in triplicate. Go versus nogo was based on finding more than 500 unique peptides in each pooled sample from each region. Next, individual samples were run through our mass spectrometry protocol in triplicate. We then subtracted any non-specifically captured peptides identified by our IgG control studies that were performed in parallel to PSD-95 affinity purification. Data were normalized within each of the mass spec runs to the most intense PSD-95 peptide. This PSD-95 peptide used for normalization was the same in every sample. Peptides that were present in at least 2 of 3 technical replicates were carried forward and subjected to quantile normalization. Peptides missing in a technical replicate were replaced by imputation, and the dataset subjected to unsupervised clustering. We also performed a semisupervised clustering protocol, non negative matrix factoring (NMF). Consensus signatures of 200 peptides were identified for each brain region, and subjected to traditional and alternative bioinformatics analyses to identify pathways, processes and compounds associated with the signatures for each brain region. RESULTS: Preliminary analyses indicate changes in the PSD-95 interactome consistent with diminished NMDA receptor signaling complex activity in schizophrenia, with lower levels of NMDA-subtype glutamate receptor subunits, as well as protein kinases associated with postsynaptic signaling in this complex. Specific biological pathways and processes identified include metabolic and inflammatory pathways. We will also present proteomic signatures generated from this dataset, and interrogate the iLINCS perturbagen database to identify drugs and genes that simulate or reverse this signature. DISCUSSION: Our preliminary data suggest that NMDA receptor function is compromised in schizophrenia. Additional work is needed to see if this is an effect of antipsychotic medications. Our proteomic findings extend the NMDA receptor hypothesis beyond the transcriptome, highlighting an important new approach for assessing abnormalities of synapses in postmortem brain. Oxford University Press 2018-04 2018-04-01 /pmc/articles/PMC5888713/ http://dx.doi.org/10.1093/schbul/sby014.133 Text en © Maryland Psychiatric Research Center 2018. http://creativecommons.org/licenses/by/4.0/ This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Abstracts
Funk, Adam
Greis, Kenneth
Meller, Jarek
McCullumsmith, Robert
32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title_full 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title_fullStr 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title_full_unstemmed 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title_short 32.2 ABNORMALITIES OF SYNAPTIC PROTEOMES IN SCHIZOPHRENIA
title_sort 32.2 abnormalities of synaptic proteomes in schizophrenia
topic Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888713/
http://dx.doi.org/10.1093/schbul/sby014.133
work_keys_str_mv AT funkadam 322abnormalitiesofsynapticproteomesinschizophrenia
AT greiskenneth 322abnormalitiesofsynapticproteomesinschizophrenia
AT mellerjarek 322abnormalitiesofsynapticproteomesinschizophrenia
AT mccullumsmithrobert 322abnormalitiesofsynapticproteomesinschizophrenia