Cargando…
O9.2. IDENTIFYING PSYCHOTIC SYMPTOMS AND PREDICTING RELAPSE THROUGH SOCIAL MEDIA
BACKGROUND: The internet and social media provide an unprecedented opportunity to transform early psychosis intervention services. This study aimed to capture concerning patterns of social media activity associated with the onset and persistence of psychotic symptoms. METHODS: Facebook and Twitter a...
Autores principales: | Birnbaum, Michael, Rizvi, Asra, Choudhury, Munmun De, Ernala, Sindhu, Cecchi, Guillermo, Kane, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888739/ http://dx.doi.org/10.1093/schbul/sby015.246 |
Ejemplares similares
-
A Collaborative Approach to Identifying Social Media Markers of Schizophrenia by Employing Machine Learning and Clinical Appraisals
por: Birnbaum, Michael L, et al.
Publicado: (2017) -
Identifying emerging mental illness utilizing search engine activity: A feasibility study
por: Birnbaum, Michael L., et al.
Publicado: (2020) -
Detecting relapse in youth with psychotic disorders utilizing patient-generated and patient-contributed digital data from Facebook
por: Birnbaum, M. L., et al.
Publicado: (2019) -
Clinician Perspectives on Using Computational Mental Health Insights From Patients’ Social Media Activities: Design and Qualitative Evaluation of a Prototype
por: Yoo, Dong Whi, et al.
Publicado: (2021) -
Utilizing Machine Learning on Internet Search Activity to Support the Diagnostic Process and Relapse Detection in Young Individuals With Early Psychosis: Feasibility Study
por: Birnbaum, Michael Leo, et al.
Publicado: (2020)