Cargando…

Data-Adaptive Estimation for Double-Robust Methods in Population-Based Cancer Epidemiology: Risk Differences for Lung Cancer Mortality by Emergency Presentation

In this paper, we propose a structural framework for population-based cancer epidemiology and evaluate the performance of double-robust estimators for a binary exposure in cancer mortality. We conduct numerical analyses to study the bias and efficiency of these estimators. Furthermore, we compare 2...

Descripción completa

Detalles Bibliográficos
Autores principales: Luque-Fernandez, Miguel Angel, Belot, Aurélien, Valeri, Linda, Cerulli, Giovanni, Maringe, Camille, Rachet, Bernard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5888939/
https://www.ncbi.nlm.nih.gov/pubmed/29020131
http://dx.doi.org/10.1093/aje/kwx317
Descripción
Sumario:In this paper, we propose a structural framework for population-based cancer epidemiology and evaluate the performance of double-robust estimators for a binary exposure in cancer mortality. We conduct numerical analyses to study the bias and efficiency of these estimators. Furthermore, we compare 2 different model selection strategies based on 1) Akaike’s Information Criterion and the Bayesian Information Criterion and 2) machine learning algorithms, and we illustrate double-robust estimators’ performance in a real-world setting. In simulations with correctly specified models and near-positivity violations, all but the naive estimators had relatively good performance. However, the augmented inverse-probability-of-treatment weighting estimator showed the largest relative bias. Under dual model misspecification and near-positivity violations, all double-robust estimators were biased. Nevertheless, the targeted maximum likelihood estimator showed the best bias-variance trade-off, more precise estimates, and appropriate 95% confidence interval coverage, supporting the use of the data-adaptive model selection strategies based on machine learning algorithms. We applied these methods to estimate adjusted 1-year mortality risk differences in 183,426 lung cancer patients diagnosed after admittance to an emergency department versus persons with a nonemergency cancer diagnosis in England (2006–2013). The adjusted mortality risk (for patients diagnosed with lung cancer after admittance to an emergency department) was 16% higher in men and 18% higher in women, suggesting the importance of interventions targeting early detection of lung cancer signs and symptoms.