Cargando…

Emotion computing using Word Mover’s Distance features based on Ren_CECps

In this paper, we propose an emotion separated method(SeTF·IDF) to assign the emotion labels of sentences with different values, which has a better visual effect compared with the values represented by TF·IDF in the visualization of a multi-label Chinese emotional corpus Ren_CECps. Inspired by the e...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Fuji, Liu, Ning
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889067/
https://www.ncbi.nlm.nih.gov/pubmed/29624573
http://dx.doi.org/10.1371/journal.pone.0194136
Descripción
Sumario:In this paper, we propose an emotion separated method(SeTF·IDF) to assign the emotion labels of sentences with different values, which has a better visual effect compared with the values represented by TF·IDF in the visualization of a multi-label Chinese emotional corpus Ren_CECps. Inspired by the enormous improvement of the visualization map propelled by the changed distances among the sentences, we being the first group utilizes the Word Mover’s Distance(WMD) algorithm as a way of feature representation in Chinese text emotion classification. Our experiments show that both in 80% for training, 20% for testing and 50% for training, 50% for testing experiments of Ren_CECps, WMD features get the best f1 scores and have a greater increase compared with the same dimension feature vectors obtained by dimension reduction TF·IDF method. Compared experiments in English corpus also show the efficiency of WMD features in the cross-language field.