Cargando…
Control of laser plasma accelerated electrons for light sources
With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser)....
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889396/ https://www.ncbi.nlm.nih.gov/pubmed/29626187 http://dx.doi.org/10.1038/s41467-018-03776-x |
_version_ | 1783312685655392256 |
---|---|
author | André, T. Andriyash, I. A. Loulergue, A. Labat, M. Roussel, E. Ghaith, A. Khojoyan, M. Thaury, C. Valléau, M. Briquez, F. Marteau, F. Tavakoli, K. N’Gotta, P. Dietrich, Y. Lambert, G. Malka, V. Benabderrahmane, C. Vétéran, J. Chapuis, L. El Ajjouri, T. Sebdaoui, M. Hubert, N. Marcouillé, O. Berteaud, P. Leclercq, N. El Ajjouri, M. Rommeluère, P. Bouvet, F. Duval, J. -P. Kitegi, C. Blache, F. Mahieu, B. Corde, S. Gautier, J. Ta Phuoc, K. Goddet, J. P. Lestrade, A. Herbeaux, C. Évain, C. Szwaj, C. Bielawski, S. Tafzi, A. Rousseau, P. Smartsev, S. Polack, F. Dennetière, D. Bourassin-Bouchet, C. De Oliveira, C. Couprie, M.-E. |
author_facet | André, T. Andriyash, I. A. Loulergue, A. Labat, M. Roussel, E. Ghaith, A. Khojoyan, M. Thaury, C. Valléau, M. Briquez, F. Marteau, F. Tavakoli, K. N’Gotta, P. Dietrich, Y. Lambert, G. Malka, V. Benabderrahmane, C. Vétéran, J. Chapuis, L. El Ajjouri, T. Sebdaoui, M. Hubert, N. Marcouillé, O. Berteaud, P. Leclercq, N. El Ajjouri, M. Rommeluère, P. Bouvet, F. Duval, J. -P. Kitegi, C. Blache, F. Mahieu, B. Corde, S. Gautier, J. Ta Phuoc, K. Goddet, J. P. Lestrade, A. Herbeaux, C. Évain, C. Szwaj, C. Bielawski, S. Tafzi, A. Rousseau, P. Smartsev, S. Polack, F. Dennetière, D. Bourassin-Bouchet, C. De Oliveira, C. Couprie, M.-E. |
author_sort | André, T. |
collection | PubMed |
description | With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality. |
format | Online Article Text |
id | pubmed-5889396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-58893962018-04-09 Control of laser plasma accelerated electrons for light sources André, T. Andriyash, I. A. Loulergue, A. Labat, M. Roussel, E. Ghaith, A. Khojoyan, M. Thaury, C. Valléau, M. Briquez, F. Marteau, F. Tavakoli, K. N’Gotta, P. Dietrich, Y. Lambert, G. Malka, V. Benabderrahmane, C. Vétéran, J. Chapuis, L. El Ajjouri, T. Sebdaoui, M. Hubert, N. Marcouillé, O. Berteaud, P. Leclercq, N. El Ajjouri, M. Rommeluère, P. Bouvet, F. Duval, J. -P. Kitegi, C. Blache, F. Mahieu, B. Corde, S. Gautier, J. Ta Phuoc, K. Goddet, J. P. Lestrade, A. Herbeaux, C. Évain, C. Szwaj, C. Bielawski, S. Tafzi, A. Rousseau, P. Smartsev, S. Polack, F. Dennetière, D. Bourassin-Bouchet, C. De Oliveira, C. Couprie, M.-E. Nat Commun Article With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality. Nature Publishing Group UK 2018-04-06 /pmc/articles/PMC5889396/ /pubmed/29626187 http://dx.doi.org/10.1038/s41467-018-03776-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article André, T. Andriyash, I. A. Loulergue, A. Labat, M. Roussel, E. Ghaith, A. Khojoyan, M. Thaury, C. Valléau, M. Briquez, F. Marteau, F. Tavakoli, K. N’Gotta, P. Dietrich, Y. Lambert, G. Malka, V. Benabderrahmane, C. Vétéran, J. Chapuis, L. El Ajjouri, T. Sebdaoui, M. Hubert, N. Marcouillé, O. Berteaud, P. Leclercq, N. El Ajjouri, M. Rommeluère, P. Bouvet, F. Duval, J. -P. Kitegi, C. Blache, F. Mahieu, B. Corde, S. Gautier, J. Ta Phuoc, K. Goddet, J. P. Lestrade, A. Herbeaux, C. Évain, C. Szwaj, C. Bielawski, S. Tafzi, A. Rousseau, P. Smartsev, S. Polack, F. Dennetière, D. Bourassin-Bouchet, C. De Oliveira, C. Couprie, M.-E. Control of laser plasma accelerated electrons for light sources |
title | Control of laser plasma accelerated electrons for light sources |
title_full | Control of laser plasma accelerated electrons for light sources |
title_fullStr | Control of laser plasma accelerated electrons for light sources |
title_full_unstemmed | Control of laser plasma accelerated electrons for light sources |
title_short | Control of laser plasma accelerated electrons for light sources |
title_sort | control of laser plasma accelerated electrons for light sources |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889396/ https://www.ncbi.nlm.nih.gov/pubmed/29626187 http://dx.doi.org/10.1038/s41467-018-03776-x |
work_keys_str_mv | AT andret controloflaserplasmaacceleratedelectronsforlightsources AT andriyashia controloflaserplasmaacceleratedelectronsforlightsources AT loulerguea controloflaserplasmaacceleratedelectronsforlightsources AT labatm controloflaserplasmaacceleratedelectronsforlightsources AT roussele controloflaserplasmaacceleratedelectronsforlightsources AT ghaitha controloflaserplasmaacceleratedelectronsforlightsources AT khojoyanm controloflaserplasmaacceleratedelectronsforlightsources AT thauryc controloflaserplasmaacceleratedelectronsforlightsources AT valleaum controloflaserplasmaacceleratedelectronsforlightsources AT briquezf controloflaserplasmaacceleratedelectronsforlightsources AT marteauf controloflaserplasmaacceleratedelectronsforlightsources AT tavakolik controloflaserplasmaacceleratedelectronsforlightsources AT ngottap controloflaserplasmaacceleratedelectronsforlightsources AT dietrichy controloflaserplasmaacceleratedelectronsforlightsources AT lambertg controloflaserplasmaacceleratedelectronsforlightsources AT malkav controloflaserplasmaacceleratedelectronsforlightsources AT benabderrahmanec controloflaserplasmaacceleratedelectronsforlightsources AT veteranj controloflaserplasmaacceleratedelectronsforlightsources AT chapuisl controloflaserplasmaacceleratedelectronsforlightsources AT elajjourit controloflaserplasmaacceleratedelectronsforlightsources AT sebdaouim controloflaserplasmaacceleratedelectronsforlightsources AT hubertn controloflaserplasmaacceleratedelectronsforlightsources AT marcouilleo controloflaserplasmaacceleratedelectronsforlightsources AT berteaudp controloflaserplasmaacceleratedelectronsforlightsources AT leclercqn controloflaserplasmaacceleratedelectronsforlightsources AT elajjourim controloflaserplasmaacceleratedelectronsforlightsources AT rommeluerep controloflaserplasmaacceleratedelectronsforlightsources AT bouvetf controloflaserplasmaacceleratedelectronsforlightsources AT duvaljp controloflaserplasmaacceleratedelectronsforlightsources AT kitegic controloflaserplasmaacceleratedelectronsforlightsources AT blachef controloflaserplasmaacceleratedelectronsforlightsources AT mahieub controloflaserplasmaacceleratedelectronsforlightsources AT cordes controloflaserplasmaacceleratedelectronsforlightsources AT gautierj controloflaserplasmaacceleratedelectronsforlightsources AT taphuock controloflaserplasmaacceleratedelectronsforlightsources AT goddetjp controloflaserplasmaacceleratedelectronsforlightsources AT lestradea controloflaserplasmaacceleratedelectronsforlightsources AT herbeauxc controloflaserplasmaacceleratedelectronsforlightsources AT evainc controloflaserplasmaacceleratedelectronsforlightsources AT szwajc controloflaserplasmaacceleratedelectronsforlightsources AT bielawskis controloflaserplasmaacceleratedelectronsforlightsources AT tafzia controloflaserplasmaacceleratedelectronsforlightsources AT rousseaup controloflaserplasmaacceleratedelectronsforlightsources AT smartsevs controloflaserplasmaacceleratedelectronsforlightsources AT polackf controloflaserplasmaacceleratedelectronsforlightsources AT dennetiered controloflaserplasmaacceleratedelectronsforlightsources AT bourassinbouchetc controloflaserplasmaacceleratedelectronsforlightsources AT deoliveirac controloflaserplasmaacceleratedelectronsforlightsources AT couprieme controloflaserplasmaacceleratedelectronsforlightsources |