Cargando…

Control of laser plasma accelerated electrons for light sources

With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser)....

Descripción completa

Detalles Bibliográficos
Autores principales: André, T., Andriyash, I. A., Loulergue, A., Labat, M., Roussel, E., Ghaith, A., Khojoyan, M., Thaury, C., Valléau, M., Briquez, F., Marteau, F., Tavakoli, K., N’Gotta, P., Dietrich, Y., Lambert, G., Malka, V., Benabderrahmane, C., Vétéran, J., Chapuis, L., El Ajjouri, T., Sebdaoui, M., Hubert, N., Marcouillé, O., Berteaud, P., Leclercq, N., El Ajjouri, M., Rommeluère, P., Bouvet, F., Duval, J. -P., Kitegi, C., Blache, F., Mahieu, B., Corde, S., Gautier, J., Ta Phuoc, K., Goddet, J. P., Lestrade, A., Herbeaux, C., Évain, C., Szwaj, C., Bielawski, S., Tafzi, A., Rousseau, P., Smartsev, S., Polack, F., Dennetière, D., Bourassin-Bouchet, C., De Oliveira, C., Couprie, M.-E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889396/
https://www.ncbi.nlm.nih.gov/pubmed/29626187
http://dx.doi.org/10.1038/s41467-018-03776-x
_version_ 1783312685655392256
author André, T.
Andriyash, I. A.
Loulergue, A.
Labat, M.
Roussel, E.
Ghaith, A.
Khojoyan, M.
Thaury, C.
Valléau, M.
Briquez, F.
Marteau, F.
Tavakoli, K.
N’Gotta, P.
Dietrich, Y.
Lambert, G.
Malka, V.
Benabderrahmane, C.
Vétéran, J.
Chapuis, L.
El Ajjouri, T.
Sebdaoui, M.
Hubert, N.
Marcouillé, O.
Berteaud, P.
Leclercq, N.
El Ajjouri, M.
Rommeluère, P.
Bouvet, F.
Duval, J. -P.
Kitegi, C.
Blache, F.
Mahieu, B.
Corde, S.
Gautier, J.
Ta Phuoc, K.
Goddet, J. P.
Lestrade, A.
Herbeaux, C.
Évain, C.
Szwaj, C.
Bielawski, S.
Tafzi, A.
Rousseau, P.
Smartsev, S.
Polack, F.
Dennetière, D.
Bourassin-Bouchet, C.
De Oliveira, C.
Couprie, M.-E.
author_facet André, T.
Andriyash, I. A.
Loulergue, A.
Labat, M.
Roussel, E.
Ghaith, A.
Khojoyan, M.
Thaury, C.
Valléau, M.
Briquez, F.
Marteau, F.
Tavakoli, K.
N’Gotta, P.
Dietrich, Y.
Lambert, G.
Malka, V.
Benabderrahmane, C.
Vétéran, J.
Chapuis, L.
El Ajjouri, T.
Sebdaoui, M.
Hubert, N.
Marcouillé, O.
Berteaud, P.
Leclercq, N.
El Ajjouri, M.
Rommeluère, P.
Bouvet, F.
Duval, J. -P.
Kitegi, C.
Blache, F.
Mahieu, B.
Corde, S.
Gautier, J.
Ta Phuoc, K.
Goddet, J. P.
Lestrade, A.
Herbeaux, C.
Évain, C.
Szwaj, C.
Bielawski, S.
Tafzi, A.
Rousseau, P.
Smartsev, S.
Polack, F.
Dennetière, D.
Bourassin-Bouchet, C.
De Oliveira, C.
Couprie, M.-E.
author_sort André, T.
collection PubMed
description With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality.
format Online
Article
Text
id pubmed-5889396
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58893962018-04-09 Control of laser plasma accelerated electrons for light sources André, T. Andriyash, I. A. Loulergue, A. Labat, M. Roussel, E. Ghaith, A. Khojoyan, M. Thaury, C. Valléau, M. Briquez, F. Marteau, F. Tavakoli, K. N’Gotta, P. Dietrich, Y. Lambert, G. Malka, V. Benabderrahmane, C. Vétéran, J. Chapuis, L. El Ajjouri, T. Sebdaoui, M. Hubert, N. Marcouillé, O. Berteaud, P. Leclercq, N. El Ajjouri, M. Rommeluère, P. Bouvet, F. Duval, J. -P. Kitegi, C. Blache, F. Mahieu, B. Corde, S. Gautier, J. Ta Phuoc, K. Goddet, J. P. Lestrade, A. Herbeaux, C. Évain, C. Szwaj, C. Bielawski, S. Tafzi, A. Rousseau, P. Smartsev, S. Polack, F. Dennetière, D. Bourassin-Bouchet, C. De Oliveira, C. Couprie, M.-E. Nat Commun Article With gigaelectron-volts per centimetre energy gains and femtosecond electron beams, laser wakefield acceleration (LWFA) is a promising candidate for applications, such as ultrafast electron diffraction, multistaged colliders and radiation sources (betatron, compton, undulator, free electron laser). However, for some of these applications, the beam performance, for example, energy spread, divergence and shot-to-shot fluctuations, need a drastic improvement. Here, we show that, using a dedicated transport line, we can mitigate these initial weaknesses. We demonstrate that we can manipulate the beam longitudinal and transverse phase-space of the presently available LWFA beams. Indeed, we separately correct orbit mis-steerings and minimise dispersion thanks to specially designed variable strength quadrupoles, and select the useful energy range passing through a slit in a magnetic chicane. Therefore, this matched electron beam leads to the successful observation of undulator synchrotron radiation after an 8 m transport path. These results pave the way to applications demanding in terms of beam quality. Nature Publishing Group UK 2018-04-06 /pmc/articles/PMC5889396/ /pubmed/29626187 http://dx.doi.org/10.1038/s41467-018-03776-x Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
André, T.
Andriyash, I. A.
Loulergue, A.
Labat, M.
Roussel, E.
Ghaith, A.
Khojoyan, M.
Thaury, C.
Valléau, M.
Briquez, F.
Marteau, F.
Tavakoli, K.
N’Gotta, P.
Dietrich, Y.
Lambert, G.
Malka, V.
Benabderrahmane, C.
Vétéran, J.
Chapuis, L.
El Ajjouri, T.
Sebdaoui, M.
Hubert, N.
Marcouillé, O.
Berteaud, P.
Leclercq, N.
El Ajjouri, M.
Rommeluère, P.
Bouvet, F.
Duval, J. -P.
Kitegi, C.
Blache, F.
Mahieu, B.
Corde, S.
Gautier, J.
Ta Phuoc, K.
Goddet, J. P.
Lestrade, A.
Herbeaux, C.
Évain, C.
Szwaj, C.
Bielawski, S.
Tafzi, A.
Rousseau, P.
Smartsev, S.
Polack, F.
Dennetière, D.
Bourassin-Bouchet, C.
De Oliveira, C.
Couprie, M.-E.
Control of laser plasma accelerated electrons for light sources
title Control of laser plasma accelerated electrons for light sources
title_full Control of laser plasma accelerated electrons for light sources
title_fullStr Control of laser plasma accelerated electrons for light sources
title_full_unstemmed Control of laser plasma accelerated electrons for light sources
title_short Control of laser plasma accelerated electrons for light sources
title_sort control of laser plasma accelerated electrons for light sources
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889396/
https://www.ncbi.nlm.nih.gov/pubmed/29626187
http://dx.doi.org/10.1038/s41467-018-03776-x
work_keys_str_mv AT andret controloflaserplasmaacceleratedelectronsforlightsources
AT andriyashia controloflaserplasmaacceleratedelectronsforlightsources
AT loulerguea controloflaserplasmaacceleratedelectronsforlightsources
AT labatm controloflaserplasmaacceleratedelectronsforlightsources
AT roussele controloflaserplasmaacceleratedelectronsforlightsources
AT ghaitha controloflaserplasmaacceleratedelectronsforlightsources
AT khojoyanm controloflaserplasmaacceleratedelectronsforlightsources
AT thauryc controloflaserplasmaacceleratedelectronsforlightsources
AT valleaum controloflaserplasmaacceleratedelectronsforlightsources
AT briquezf controloflaserplasmaacceleratedelectronsforlightsources
AT marteauf controloflaserplasmaacceleratedelectronsforlightsources
AT tavakolik controloflaserplasmaacceleratedelectronsforlightsources
AT ngottap controloflaserplasmaacceleratedelectronsforlightsources
AT dietrichy controloflaserplasmaacceleratedelectronsforlightsources
AT lambertg controloflaserplasmaacceleratedelectronsforlightsources
AT malkav controloflaserplasmaacceleratedelectronsforlightsources
AT benabderrahmanec controloflaserplasmaacceleratedelectronsforlightsources
AT veteranj controloflaserplasmaacceleratedelectronsforlightsources
AT chapuisl controloflaserplasmaacceleratedelectronsforlightsources
AT elajjourit controloflaserplasmaacceleratedelectronsforlightsources
AT sebdaouim controloflaserplasmaacceleratedelectronsforlightsources
AT hubertn controloflaserplasmaacceleratedelectronsforlightsources
AT marcouilleo controloflaserplasmaacceleratedelectronsforlightsources
AT berteaudp controloflaserplasmaacceleratedelectronsforlightsources
AT leclercqn controloflaserplasmaacceleratedelectronsforlightsources
AT elajjourim controloflaserplasmaacceleratedelectronsforlightsources
AT rommeluerep controloflaserplasmaacceleratedelectronsforlightsources
AT bouvetf controloflaserplasmaacceleratedelectronsforlightsources
AT duvaljp controloflaserplasmaacceleratedelectronsforlightsources
AT kitegic controloflaserplasmaacceleratedelectronsforlightsources
AT blachef controloflaserplasmaacceleratedelectronsforlightsources
AT mahieub controloflaserplasmaacceleratedelectronsforlightsources
AT cordes controloflaserplasmaacceleratedelectronsforlightsources
AT gautierj controloflaserplasmaacceleratedelectronsforlightsources
AT taphuock controloflaserplasmaacceleratedelectronsforlightsources
AT goddetjp controloflaserplasmaacceleratedelectronsforlightsources
AT lestradea controloflaserplasmaacceleratedelectronsforlightsources
AT herbeauxc controloflaserplasmaacceleratedelectronsforlightsources
AT evainc controloflaserplasmaacceleratedelectronsforlightsources
AT szwajc controloflaserplasmaacceleratedelectronsforlightsources
AT bielawskis controloflaserplasmaacceleratedelectronsforlightsources
AT tafzia controloflaserplasmaacceleratedelectronsforlightsources
AT rousseaup controloflaserplasmaacceleratedelectronsforlightsources
AT smartsevs controloflaserplasmaacceleratedelectronsforlightsources
AT polackf controloflaserplasmaacceleratedelectronsforlightsources
AT dennetiered controloflaserplasmaacceleratedelectronsforlightsources
AT bourassinbouchetc controloflaserplasmaacceleratedelectronsforlightsources
AT deoliveirac controloflaserplasmaacceleratedelectronsforlightsources
AT couprieme controloflaserplasmaacceleratedelectronsforlightsources