Cargando…

Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review

BACKGROUND: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with...

Descripción completa

Detalles Bibliográficos
Autores principales: McCallum, Claire, Rooksby, John, Gray, Cindy M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: JMIR Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889496/
https://www.ncbi.nlm.nih.gov/pubmed/29572200
http://dx.doi.org/10.2196/mhealth.9054
_version_ 1783312707963846656
author McCallum, Claire
Rooksby, John
Gray, Cindy M
author_facet McCallum, Claire
Rooksby, John
Gray, Cindy M
author_sort McCallum, Claire
collection PubMed
description BACKGROUND: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. OBJECTIVES: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. METHOD: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. RESULTS: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). CONCLUSIONS: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines.
format Online
Article
Text
id pubmed-5889496
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher JMIR Publications
record_format MEDLINE/PubMed
spelling pubmed-58894962018-04-11 Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review McCallum, Claire Rooksby, John Gray, Cindy M JMIR Mhealth Uhealth Review BACKGROUND: Although many smartphone apps and wearables have been designed to improve physical activity, their rapidly evolving nature and complexity present challenges for evaluating their impact. Traditional methodologies, such as randomized controlled trials (RCTs), can be slow. To keep pace with rapid technological development, evaluations of mobile health technologies must be efficient. Rapid alternative research designs have been proposed, and efficient in-app data collection methods, including in-device sensors and device-generated logs, are available. Along with effectiveness, it is important to measure engagement (ie, users’ interaction and usage behavior) and acceptability (ie, users’ subjective perceptions and experiences) to help explain how and why apps and wearables work. OBJECTIVES: This study aimed to (1) explore the extent to which evaluations of physical activity apps and wearables: employ rapid research designs; assess engagement, acceptability, as well as effectiveness; use efficient data collection methods; and (2) describe which dimensions of engagement and acceptability are assessed. METHOD: An interdisciplinary scoping review using 8 databases from health and computing sciences. Included studies measured physical activity, and evaluated physical activity apps or wearables that provided sensor-based feedback. Results were analyzed using descriptive numerical summaries, chi-square testing, and qualitative thematic analysis. RESULTS: A total of 1829 abstracts were screened, and 858 articles read in full. Of 111 included studies, 61 (55.0%) were published between 2015 and 2017. Most (55.0%, 61/111) were RCTs, and only 2 studies (1.8%) used rapid research designs: 1 single-case design and 1 multiphase optimization strategy. Other research designs included 23 (22.5%) repeated measures designs, 11 (9.9%) nonrandomized group designs, 10 (9.0%) case studies, and 4 (3.6%) observational studies. Less than one-third of the studies (32.0%, 35/111) investigated effectiveness, engagement, and acceptability together. To measure physical activity, most studies (90.1%, 101/111) employed sensors (either in-device [67.6%, 75/111] or external [23.4%, 26/111]). RCTs were more likely to employ external sensors (accelerometers: P=.005). Studies that assessed engagement (52.3%, 58/111) mostly used device-generated logs (91%, 53/58) to measure the frequency, depth, and length of engagement. Studies that assessed acceptability (57.7%, 64/111) most often used questionnaires (64%, 42/64) and/or qualitative methods (53%, 34/64) to explore appreciation, perceived effectiveness and usefulness, satisfaction, intention to continue use, and social acceptability. Some studies (14.4%, 16/111) assessed dimensions more closely related to usability (ie, burden of sensor wear and use, interface complexity, and perceived technical performance). CONCLUSIONS: The rapid increase of research into the impact of physical activity apps and wearables means that evaluation guidelines are urgently needed to promote efficiency through the use of rapid research designs, in-device sensors and user-logs to assess effectiveness, engagement, and acceptability. Screening articles was time-consuming because reporting across health and computing sciences lacked standardization. Reporting guidelines are therefore needed to facilitate the synthesis of evidence across disciplines. JMIR Publications 2018-03-23 /pmc/articles/PMC5889496/ /pubmed/29572200 http://dx.doi.org/10.2196/mhealth.9054 Text en ©Claire McCallum, John Rooksby, Cindy M Gray. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 23.03.2018. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must be included.
spellingShingle Review
McCallum, Claire
Rooksby, John
Gray, Cindy M
Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title_full Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title_fullStr Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title_full_unstemmed Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title_short Evaluating the Impact of Physical Activity Apps and Wearables: Interdisciplinary Review
title_sort evaluating the impact of physical activity apps and wearables: interdisciplinary review
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889496/
https://www.ncbi.nlm.nih.gov/pubmed/29572200
http://dx.doi.org/10.2196/mhealth.9054
work_keys_str_mv AT mccallumclaire evaluatingtheimpactofphysicalactivityappsandwearablesinterdisciplinaryreview
AT rooksbyjohn evaluatingtheimpactofphysicalactivityappsandwearablesinterdisciplinaryreview
AT graycindym evaluatingtheimpactofphysicalactivityappsandwearablesinterdisciplinaryreview