Cargando…
Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children
OBJECTIVE: Executive functions (EF) are cognitive skills that are important for regulating behavior and for achieving goals. Executive function deficits are common in children who struggle in school and are associated with multiple neurodevelopmental disorders. However, there is also considerable he...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889789/ https://www.ncbi.nlm.nih.gov/pubmed/29588051 http://dx.doi.org/10.1016/j.jaac.2018.01.014 |
_version_ | 1783312752724410368 |
---|---|
author | Bathelt, Joe Holmes, Joni Astle, Duncan E. |
author_facet | Bathelt, Joe Holmes, Joni Astle, Duncan E. |
author_sort | Bathelt, Joe |
collection | PubMed |
description | OBJECTIVE: Executive functions (EF) are cognitive skills that are important for regulating behavior and for achieving goals. Executive function deficits are common in children who struggle in school and are associated with multiple neurodevelopmental disorders. However, there is also considerable heterogeneity across children, even within diagnostic categories. This study took a data-driven approach to identify distinct clusters of children with common profiles of EF-related difficulties, and then identified patterns of brain organization that distinguish these data-driven groups. METHOD: The sample consisted of 442 children identified by health and educational professionals as having difficulties in attention, learning, and/or memory. We applied community clustering, a data-driven clustering algorithm, to group children by similarities on a commonly used rating scale of EF-associated behavioral difficulties, the Conners 3 questionnaire. We then investigated whether the groups identified by the algorithm could be distinguished on white matter connectivity using a structural connectomics approach combined with partial least squares analysis. RESULTS: The data-driven clustering yielded 3 distinct groups of children with symptoms of one of the following: (1) elevated inattention and hyperactivity/impulsivity, and poor EF; (2) learning problems; or (3) aggressive behavior and problems with peer relationships. These groups were associated with significant interindividual variation in white matter connectivity of the prefrontal and anterior cingulate cortices. CONCLUSION: In sum, data-driven classification of EF-related behavioral difficulties identified stable groups of children, provided a good account of interindividual differences, and aligned closely with underlying neurobiological substrates. |
format | Online Article Text |
id | pubmed-5889789 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-58897892018-04-09 Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children Bathelt, Joe Holmes, Joni Astle, Duncan E. J Am Acad Child Adolesc Psychiatry Article OBJECTIVE: Executive functions (EF) are cognitive skills that are important for regulating behavior and for achieving goals. Executive function deficits are common in children who struggle in school and are associated with multiple neurodevelopmental disorders. However, there is also considerable heterogeneity across children, even within diagnostic categories. This study took a data-driven approach to identify distinct clusters of children with common profiles of EF-related difficulties, and then identified patterns of brain organization that distinguish these data-driven groups. METHOD: The sample consisted of 442 children identified by health and educational professionals as having difficulties in attention, learning, and/or memory. We applied community clustering, a data-driven clustering algorithm, to group children by similarities on a commonly used rating scale of EF-associated behavioral difficulties, the Conners 3 questionnaire. We then investigated whether the groups identified by the algorithm could be distinguished on white matter connectivity using a structural connectomics approach combined with partial least squares analysis. RESULTS: The data-driven clustering yielded 3 distinct groups of children with symptoms of one of the following: (1) elevated inattention and hyperactivity/impulsivity, and poor EF; (2) learning problems; or (3) aggressive behavior and problems with peer relationships. These groups were associated with significant interindividual variation in white matter connectivity of the prefrontal and anterior cingulate cortices. CONCLUSION: In sum, data-driven classification of EF-related behavioral difficulties identified stable groups of children, provided a good account of interindividual differences, and aligned closely with underlying neurobiological substrates. Elsevier 2018-04 /pmc/articles/PMC5889789/ /pubmed/29588051 http://dx.doi.org/10.1016/j.jaac.2018.01.014 Text en © 2018 The Authors http://creativecommons.org/licenses/by/4.0/ This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Bathelt, Joe Holmes, Joni Astle, Duncan E. Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title | Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title_full | Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title_fullStr | Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title_full_unstemmed | Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title_short | Data-Driven Subtyping of Executive Function–Related Behavioral Problems in Children |
title_sort | data-driven subtyping of executive function–related behavioral problems in children |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5889789/ https://www.ncbi.nlm.nih.gov/pubmed/29588051 http://dx.doi.org/10.1016/j.jaac.2018.01.014 |
work_keys_str_mv | AT batheltjoe datadrivensubtypingofexecutivefunctionrelatedbehavioralproblemsinchildren AT holmesjoni datadrivensubtypingofexecutivefunctionrelatedbehavioralproblemsinchildren AT astleduncane datadrivensubtypingofexecutivefunctionrelatedbehavioralproblemsinchildren AT datadrivensubtypingofexecutivefunctionrelatedbehavioralproblemsinchildren |