Cargando…
A reverse Mulholland-type inequality in the whole plane
We present a new reverse Mulholland-type inequality in the whole plane with a best possible constant factor by introducing multiparameters, applying weight coefficients, and using the Hermite–Hadamard inequality. Moreover, we consider equivalent forms and some particular cases.
Autores principales: | Liao, Jianquan, Yang, Bicheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891574/ https://www.ncbi.nlm.nih.gov/pubmed/29674835 http://dx.doi.org/10.1186/s13660-018-1669-z |
Ejemplares similares
-
On a reverse Mulholland’s inequality in the whole plane
por: Wang, Aizhen, et al.
Publicado: (2018) -
On a new discrete Mulholland-type inequality in the whole plane
por: Yang, Bicheng, et al.
Publicado: (2018) -
On a more accurate Hardy-Mulholland-type inequality
por: Yang, Bicheng, et al.
Publicado: (2017) -
An extended reverse Hardy–Hilbert’s inequality in the whole plane
por: Chen, Qiang, et al.
Publicado: (2018) -
Parameterized Hilbert-Type Integral Inequalities in the Whole Plane
por: Huang, Qiliang, et al.
Publicado: (2014)