Cargando…
Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba
Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblage...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891642/ https://www.ncbi.nlm.nih.gov/pubmed/29666607 http://dx.doi.org/10.3389/fmicb.2018.00510 |
_version_ | 1783313038295695360 |
---|---|
author | Valdespino-Castillo, Patricia M. Hu, Ping Merino-Ibarra, Martín López-Gómez, Luz M. Cerqueda-García, Daniel González-De Zayas, Roberto Pi-Puig, Teresa Lestayo, Julio A. Holman, Hoi-Ying Falcón, Luisa I. |
author_facet | Valdespino-Castillo, Patricia M. Hu, Ping Merino-Ibarra, Martín López-Gómez, Luz M. Cerqueda-García, Daniel González-De Zayas, Roberto Pi-Puig, Teresa Lestayo, Julio A. Holman, Hoi-Ying Falcón, Luisa I. |
author_sort | Valdespino-Castillo, Patricia M. |
collection | PubMed |
description | Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (C(org)), nitrogen and C(org):Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. |
format | Online Article Text |
id | pubmed-5891642 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58916422018-04-17 Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba Valdespino-Castillo, Patricia M. Hu, Ping Merino-Ibarra, Martín López-Gómez, Luz M. Cerqueda-García, Daniel González-De Zayas, Roberto Pi-Puig, Teresa Lestayo, Julio A. Holman, Hoi-Ying Falcón, Luisa I. Front Microbiol Microbiology Microbialites are modern analogs of ancient microbial consortia that date as far back as the Archaean Eon. Microbialites have contributed to the geochemical history of our planet through their diverse metabolic capacities that mediate mineral precipitation. These mineral-forming microbial assemblages accumulate major ions, trace elements and biomass from their ambient aquatic environments; their role in the resulting chemical structure of these lithifications needs clarification. We studied the biogeochemistry and microbial structure of microbialites collected from diverse locations in Mexico and in a previously undescribed microbialite in Cuba. We examined their structure, chemistry and mineralogy at different scales using an array of nested methods including 16S rRNA gene high-throughput sequencing, elemental analysis, X-Ray fluorescence (XRF), X-Ray diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), Fourier Transformed Infrared (FTIR) spectroscopy and Synchrotron Radiation-based Fourier Transformed Infrared (SR-FTIR) spectromicroscopy. The resulting data revealed high biological and chemical diversity among microbialites and specific microbe to chemical correlations. Regardless of the sampling site, Proteobacteria had the most significant correlations with biogeochemical parameters such as organic carbon (C(org)), nitrogen and C(org):Ca ratio. Biogeochemically relevant bacterial groups (dominant phototrophs and heterotrophs) showed significant correlations with major ion composition, mineral type and transition element content, such as cadmium, cobalt, chromium, copper and nickel. Microbial-chemical relationships were discussed in reference to microbialite formation, microbial metabolic capacities and the role of transition elements as enzyme cofactors. This paper provides an analytical baseline to drive our understanding of the links between microbial diversity with the chemistry of their lithified precipitations. Frontiers Media S.A. 2018-04-03 /pmc/articles/PMC5891642/ /pubmed/29666607 http://dx.doi.org/10.3389/fmicb.2018.00510 Text en Copyright © 2018 Valdespino-Castillo, Hu, Merino-Ibarra, López-Gómez, Cerqueda-García, González-De Zayas, Pi-Puig, Lestayo, Holman and Falcón. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Microbiology Valdespino-Castillo, Patricia M. Hu, Ping Merino-Ibarra, Martín López-Gómez, Luz M. Cerqueda-García, Daniel González-De Zayas, Roberto Pi-Puig, Teresa Lestayo, Julio A. Holman, Hoi-Ying Falcón, Luisa I. Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title | Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title_full | Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title_fullStr | Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title_full_unstemmed | Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title_short | Exploring Biogeochemistry and Microbial Diversity of Extant Microbialites in Mexico and Cuba |
title_sort | exploring biogeochemistry and microbial diversity of extant microbialites in mexico and cuba |
topic | Microbiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891642/ https://www.ncbi.nlm.nih.gov/pubmed/29666607 http://dx.doi.org/10.3389/fmicb.2018.00510 |
work_keys_str_mv | AT valdespinocastillopatriciam exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT huping exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT merinoibarramartin exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT lopezgomezluzm exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT cerquedagarciadaniel exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT gonzalezdezayasroberto exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT pipuigteresa exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT lestayojulioa exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT holmanhoiying exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba AT falconluisai exploringbiogeochemistryandmicrobialdiversityofextantmicrobialitesinmexicoandcuba |