Cargando…
Biologically-Inspired Spike-Based Automatic Speech Recognition of Isolated Digits Over a Reproducing Kernel Hilbert Space
This paper presents a novel real-time dynamic framework for quantifying time-series structure in spoken words using spikes. Audio signals are converted into multi-channel spike trains using a biologically-inspired leaky integrate-and-fire (LIF) spike generator. These spike trains are mapped into a f...
Autores principales: | Li, Kan, Príncipe, José C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891646/ https://www.ncbi.nlm.nih.gov/pubmed/29666568 http://dx.doi.org/10.3389/fnins.2018.00194 |
Ejemplares similares
-
Reproducing kernel hilbert spaces in probability and statistics
por: Berlinet, Alain, et al.
Publicado: (2004) -
A primer on reproducing kernel Hilbert spaces
por: Manton, Jonathan H, et al.
Publicado: (2015) -
High-Order Sequential Simulation via Statistical Learning in Reproducing Kernel Hilbert Space
por: Yao, Lingqing, et al.
Publicado: (2019) -
Combining Dissimilarities in a Hyper Reproducing Kernel Hilbert Space for Complex Human Cancer Prediction
por: Martín-Merino, Manuel, et al.
Publicado: (2009) -
Reproducing kernel spaces and applications
por: Alpay, Daniel
Publicado: (2003)