Cargando…

A novel mutation in the BCHE gene and phenotype identified in a child with low butyrylcholinesterase activity: a case report

BACKGROUND: Butyrylcholinesterase (BChE), an ester hydrolase produced mainly by the liver, hydrolyzes certain short-acting neuromuscular blocking agents, like succinylcholine and mivacurium that are widely used during anesthesia. Patients with BChE deficiency are possibly in danger of postanesthetic...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Rentao, Guo, Yanzhi, Dan, Yunjie, Tan, Wenting, Mao, Qing, Deng, Guohong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891924/
https://www.ncbi.nlm.nih.gov/pubmed/29631548
http://dx.doi.org/10.1186/s12881-018-0561-5
Descripción
Sumario:BACKGROUND: Butyrylcholinesterase (BChE), an ester hydrolase produced mainly by the liver, hydrolyzes certain short-acting neuromuscular blocking agents, like succinylcholine and mivacurium that are widely used during anesthesia. Patients with BChE deficiency are possibly in danger of postanesthetic apnea. Hereditary BChE deficiency results from the mutations of BCHE gene located on chromosome 3, 3q26.1-q26.2, between nucleotides 165,490,692–165,555,260. CASE PRESENTATION: This study describes a novel mutation in a child with BChE deficiency. In general, this child appeared healthy and well-developed with a normal appearance. However, the results of Wechsler Intelligence Scale showed that the full-scale intelligence quotient (FIQ) was 53, classified into the group with the minor defect. The BChE activity was 32.0 U/L, considerably lower than the normal lower limit (reference range: 5000-12,000 U/L). Sanger sequencing showed that there were 2 mutations in the exon 2 of BCHE gene of this child. One is a heterozygous mutation rs764588882 (NM_000055.3: c.401_402insA, p.Asn134Lysfs*23). The other one is a heterozygous mutation (NM_000055.3: c.73A > T, p.Lys25Ter) that has never been reported before. The two mutations lead to a premature stop of transcription. CONCLUSIONS: Double heterozygous recessive mutations are the cause of BChE deficiency of this boy in this study, including a novel mutation c.73A > T. Intellectual disability is a new phenotype that is probably associated with this mutation.