Cargando…
Machine learning classification of first-episode schizophrenia spectrum disorders and controls using whole brain white matter fractional anisotropy
BACKGROUND: Early diagnosis of schizophrenia could improve the outcome of the illness. Unlike classical between-group comparisons, machine learning can identify subtle disease patterns on a single subject level, which could help realize the potential of MRI in establishing a psychiatric diagnosis. M...
Autores principales: | Mikolas, Pavol, Hlinka, Jaroslav, Skoch, Antonin, Pitra, Zbynek, Frodl, Thomas, Spaniel, Filip, Hajek, Tomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5891928/ https://www.ncbi.nlm.nih.gov/pubmed/29636016 http://dx.doi.org/10.1186/s12888-018-1678-y |
Ejemplares similares
-
Higher Body-Mass Index and Lower Gray Matter Volumes in First Episode of Psychosis
por: Kolenič, Marián, et al.
Publicado: (2020) -
Human brain structural connectivity matrices–ready for modelling
por: Škoch, Antonín, et al.
Publicado: (2022) -
T148. THALAMIC-CORTICAL CONNECTIVITY IN PATIENTS WITH AUDITORY HALLUCINATIONS IN SCHIZOPHRENIA
por: Zaytseva, Yulia, et al.
Publicado: (2018) -
Cognitive Profiles and Functional Connectivity in First-Episode Schizophrenia Spectrum Disorders – Linking Behavioral and Neuronal Data
por: Rodriguez, Mabel, et al.
Publicado: (2019) -
Comparison of Visuospatial and Verbal Abilities in First Psychotic Episode of Schizophrenia Spectrum Disorder: Impact on Global Functioning and Quality of Life
por: Rodriguez, Mabel, et al.
Publicado: (2015)