Cargando…
Deep Learning Methods for Underwater Target Feature Extraction and Recognition
The classification and recognition technology of underwater acoustic signal were always an important research content in the field of underwater acoustic signal processing. Currently, wavelet transform, Hilbert-Huang transform, and Mel frequency cepstral coefficients are used as a method of underwat...
Autores principales: | Hu, Gang, Wang, Kejun, Peng, Yuan, Qiu, Mengran, Shi, Jianfei, Liu, Liangliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892262/ https://www.ncbi.nlm.nih.gov/pubmed/29780407 http://dx.doi.org/10.1155/2018/1214301 |
Ejemplares similares
-
Underwater Acoustic Target Recognition Based on Depthwise Separable Convolution Neural Networks
por: Hu, Gang, et al.
Publicado: (2021) -
A Novel Deep-Learning Method with Channel Attention Mechanism for Underwater Target Recognition
por: Xue, Lingzhi, et al.
Publicado: (2022) -
Underwater Acoustic Target Recognition Based on Supervised Feature-Separation Algorithm
por: Ke, Xiaoquan, et al.
Publicado: (2018) -
Competitive Deep-Belief Networks for Underwater Acoustic Target Recognition
por: Yang, Honghui, et al.
Publicado: (2018) -
Deep convolution stack for waveform in underwater acoustic target recognition
por: Tian, Shengzhao, et al.
Publicado: (2021)