Cargando…

Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-

The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in predictio...

Descripción completa

Detalles Bibliográficos
Autores principales: Brinkhues, S., van Kuijk, S. M. J., Hoebe, C. J. P. A., Savelkoul, P. H. M., Kretzschmar, M. E. E., Jansen, M. W. J., de Vries, N., Sep, S. J. S., Dagnelie, P. C., Schaper, N. C., Verhey, F. R. J., Bosma, H., Maes, J., Schram, M. T., Dukers-Muijrers, N. H. T. M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892426/
https://www.ncbi.nlm.nih.gov/pubmed/28946936
http://dx.doi.org/10.1017/S0950268817002187
_version_ 1783313167677390848
author Brinkhues, S.
van Kuijk, S. M. J.
Hoebe, C. J. P. A.
Savelkoul, P. H. M.
Kretzschmar, M. E. E.
Jansen, M. W. J.
de Vries, N.
Sep, S. J. S.
Dagnelie, P. C.
Schaper, N. C.
Verhey, F. R. J.
Bosma, H.
Maes, J.
Schram, M. T.
Dukers-Muijrers, N. H. T. M.
author_facet Brinkhues, S.
van Kuijk, S. M. J.
Hoebe, C. J. P. A.
Savelkoul, P. H. M.
Kretzschmar, M. E. E.
Jansen, M. W. J.
de Vries, N.
Sep, S. J. S.
Dagnelie, P. C.
Schaper, N. C.
Verhey, F. R. J.
Bosma, H.
Maes, J.
Schram, M. T.
Dukers-Muijrers, N. H. T. M.
author_sort Brinkhues, S.
collection PubMed
description The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in prediction models. Data were obtained from The Maastricht Study, a population-based cohort study (N = 3074, mean age (±s.d.) 59.8 ± 8.3, 48.8% women). We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months). We determined performance of the models by quantifying measures of discriminative ability and calibration. Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI. The area under the curve was 64.7% (95% confidence interval (CI) 62.6–66.8%) for URI, 71.1% (95% CI 68.4–73.8) for LRI, and 64.2% (95% CI 61.3–67.1%) for GI. All models had good calibration (based on visual inspection of calibration plot, and Hosmer–Lemeshow goodness-of-fit test). Social network parameters were strong predictors for URI, LRI, and GI. Using social network parameters in prediction models for URI, LRI, and GI seems highly promising. Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual's probability of infections.
format Online
Article
Text
id pubmed-5892426
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-58924262018-04-13 Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- Brinkhues, S. van Kuijk, S. M. J. Hoebe, C. J. P. A. Savelkoul, P. H. M. Kretzschmar, M. E. E. Jansen, M. W. J. de Vries, N. Sep, S. J. S. Dagnelie, P. C. Schaper, N. C. Verhey, F. R. J. Bosma, H. Maes, J. Schram, M. T. Dukers-Muijrers, N. H. T. M. Epidemiol Infect Original Paper The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in prediction models. Data were obtained from The Maastricht Study, a population-based cohort study (N = 3074, mean age (±s.d.) 59.8 ± 8.3, 48.8% women). We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months). We determined performance of the models by quantifying measures of discriminative ability and calibration. Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI. The area under the curve was 64.7% (95% confidence interval (CI) 62.6–66.8%) for URI, 71.1% (95% CI 68.4–73.8) for LRI, and 64.2% (95% CI 61.3–67.1%) for GI. All models had good calibration (based on visual inspection of calibration plot, and Hosmer–Lemeshow goodness-of-fit test). Social network parameters were strong predictors for URI, LRI, and GI. Using social network parameters in prediction models for URI, LRI, and GI seems highly promising. Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual's probability of infections. Cambridge University Press 2018-04 2017-09-26 /pmc/articles/PMC5892426/ /pubmed/28946936 http://dx.doi.org/10.1017/S0950268817002187 Text en © Cambridge University Press 2017 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Brinkhues, S.
van Kuijk, S. M. J.
Hoebe, C. J. P. A.
Savelkoul, P. H. M.
Kretzschmar, M. E. E.
Jansen, M. W. J.
de Vries, N.
Sep, S. J. S.
Dagnelie, P. C.
Schaper, N. C.
Verhey, F. R. J.
Bosma, H.
Maes, J.
Schram, M. T.
Dukers-Muijrers, N. H. T. M.
Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title_full Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title_fullStr Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title_full_unstemmed Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title_short Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
title_sort development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -the maastricht study-
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892426/
https://www.ncbi.nlm.nih.gov/pubmed/28946936
http://dx.doi.org/10.1017/S0950268817002187
work_keys_str_mv AT brinkhuess developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT vankuijksmj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT hoebecjpa developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT savelkoulphm developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT kretzschmarmee developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT jansenmwj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT devriesn developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT sepsjs developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT dagneliepc developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT schapernc developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT verheyfrj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT bosmah developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT maesj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT schrammt developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy
AT dukersmuijrersnhtm developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy