Cargando…
Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study-
The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in predictio...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892426/ https://www.ncbi.nlm.nih.gov/pubmed/28946936 http://dx.doi.org/10.1017/S0950268817002187 |
_version_ | 1783313167677390848 |
---|---|
author | Brinkhues, S. van Kuijk, S. M. J. Hoebe, C. J. P. A. Savelkoul, P. H. M. Kretzschmar, M. E. E. Jansen, M. W. J. de Vries, N. Sep, S. J. S. Dagnelie, P. C. Schaper, N. C. Verhey, F. R. J. Bosma, H. Maes, J. Schram, M. T. Dukers-Muijrers, N. H. T. M. |
author_facet | Brinkhues, S. van Kuijk, S. M. J. Hoebe, C. J. P. A. Savelkoul, P. H. M. Kretzschmar, M. E. E. Jansen, M. W. J. de Vries, N. Sep, S. J. S. Dagnelie, P. C. Schaper, N. C. Verhey, F. R. J. Bosma, H. Maes, J. Schram, M. T. Dukers-Muijrers, N. H. T. M. |
author_sort | Brinkhues, S. |
collection | PubMed |
description | The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in prediction models. Data were obtained from The Maastricht Study, a population-based cohort study (N = 3074, mean age (±s.d.) 59.8 ± 8.3, 48.8% women). We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months). We determined performance of the models by quantifying measures of discriminative ability and calibration. Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI. The area under the curve was 64.7% (95% confidence interval (CI) 62.6–66.8%) for URI, 71.1% (95% CI 68.4–73.8) for LRI, and 64.2% (95% CI 61.3–67.1%) for GI. All models had good calibration (based on visual inspection of calibration plot, and Hosmer–Lemeshow goodness-of-fit test). Social network parameters were strong predictors for URI, LRI, and GI. Using social network parameters in prediction models for URI, LRI, and GI seems highly promising. Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual's probability of infections. |
format | Online Article Text |
id | pubmed-5892426 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-58924262018-04-13 Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- Brinkhues, S. van Kuijk, S. M. J. Hoebe, C. J. P. A. Savelkoul, P. H. M. Kretzschmar, M. E. E. Jansen, M. W. J. de Vries, N. Sep, S. J. S. Dagnelie, P. C. Schaper, N. C. Verhey, F. R. J. Bosma, H. Maes, J. Schram, M. T. Dukers-Muijrers, N. H. T. M. Epidemiol Infect Original Paper The ability to predict upper respiratory infections (URI), lower respiratory infections (LRI), and gastrointestinal tract infections (GI) in independently living older persons would greatly benefit population and individual health. Social network parameters have so far not been included in prediction models. Data were obtained from The Maastricht Study, a population-based cohort study (N = 3074, mean age (±s.d.) 59.8 ± 8.3, 48.8% women). We used multivariable logistic regression analysis to develop prediction models for self-reported symptomatic URI, LRI, and GI (past 2 months). We determined performance of the models by quantifying measures of discriminative ability and calibration. Overall, 953 individuals (31.0%) reported URI, 349 (11.4%) LRI, and 380 (12.4%) GI. The area under the curve was 64.7% (95% confidence interval (CI) 62.6–66.8%) for URI, 71.1% (95% CI 68.4–73.8) for LRI, and 64.2% (95% CI 61.3–67.1%) for GI. All models had good calibration (based on visual inspection of calibration plot, and Hosmer–Lemeshow goodness-of-fit test). Social network parameters were strong predictors for URI, LRI, and GI. Using social network parameters in prediction models for URI, LRI, and GI seems highly promising. Such parameters may be used as potential determinants that can be addressed in a practical intervention in older persons, or in a predictive tool to compute an individual's probability of infections. Cambridge University Press 2018-04 2017-09-26 /pmc/articles/PMC5892426/ /pubmed/28946936 http://dx.doi.org/10.1017/S0950268817002187 Text en © Cambridge University Press 2017 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Brinkhues, S. van Kuijk, S. M. J. Hoebe, C. J. P. A. Savelkoul, P. H. M. Kretzschmar, M. E. E. Jansen, M. W. J. de Vries, N. Sep, S. J. S. Dagnelie, P. C. Schaper, N. C. Verhey, F. R. J. Bosma, H. Maes, J. Schram, M. T. Dukers-Muijrers, N. H. T. M. Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title | Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title_full | Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title_fullStr | Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title_full_unstemmed | Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title_short | Development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -The Maastricht Study- |
title_sort | development of prediction models for upper and lower respiratory and gastrointestinal tract infections using social network parameters in middle-aged and older persons -the maastricht study- |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892426/ https://www.ncbi.nlm.nih.gov/pubmed/28946936 http://dx.doi.org/10.1017/S0950268817002187 |
work_keys_str_mv | AT brinkhuess developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT vankuijksmj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT hoebecjpa developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT savelkoulphm developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT kretzschmarmee developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT jansenmwj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT devriesn developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT sepsjs developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT dagneliepc developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT schapernc developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT verheyfrj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT bosmah developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT maesj developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT schrammt developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy AT dukersmuijrersnhtm developmentofpredictionmodelsforupperandlowerrespiratoryandgastrointestinaltractinfectionsusingsocialnetworkparametersinmiddleagedandolderpersonsthemaastrichtstudy |