Cargando…

Assessing clogging of laminated hydrophobic membrane during fecal sludge drying

A new sanitation technology has been proposed in which a laminated hydrophobic membrane contains and enhances drying of fecal sludge in a toilet, with particular focus on application to urban regions of low-income countries. The proposed technology uses a laminated hydrophobic membrane liner as an i...

Descripción completa

Detalles Bibliográficos
Autores principales: Bakhshayesh, Babak Ebrazi, Imhoff, Paul T., Dentel, Steven K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892458/
https://www.ncbi.nlm.nih.gov/pubmed/29426196
http://dx.doi.org/10.1016/j.scitotenv.2018.01.209
Descripción
Sumario:A new sanitation technology has been proposed in which a laminated hydrophobic membrane contains and enhances drying of fecal sludge in a toilet, with particular focus on application to urban regions of low-income countries. The proposed technology uses a laminated hydrophobic membrane liner as an integral component of container-based sanitation systems. The focus of this study is to quantitatively evaluate the laminate's clogging after repeated use, which will affect replacement interval and might limit the laminate's application in container-based toilets. The membrane of the laminated hydrophobic membrane used in this process is hydrophobic and only allows vapor transport. Drying of water vapor using the laminated hydrophobic membrane occurs due to moderate temperature or humidity gradients, while other constituents such as aqueous dissolved solutes of fecal sludge are retained. Controlled laboratory experiments evaluated repeated use of a laminated hydrophobic membrane for fecal sludge drying, with mild brushing/rinsing of the laminate between each application. Drying occurred at a constant rate as long as the fecal sludge moisture content exceeded 11.6 (g/g), below which water activity <1. Over five drying cycles, at a significance level of α = 0.05 the dimensionless drying rate in the constant-rate period was not reduced. While scanning electron microscopy and energy dispersive X-ray analyses of used laminated hydrophobic membrane showed deposition of fecal sludge on the inner fabric of the laminate, particulate accumulation was never sufficient to alter the fecal sludge drying rate. Experiments with only water indicated that the fecal sludge increased the effective diffusion length through the laminate by 10–30%. These data demonstrate that clogging of the laminated hydrophobic membrane is minor over five cycles of fecal sludge drying with mild rinsing between cycles, indicating that use of the laminate may be feasible in many field applications.