Cargando…
A Robust Method for Estimating B0 Inhomogeneity Field in the Liver by Mitigating Fat Signals and Phase-Wrapping
We developed an optimized and robust method to estimate liver B0 field inhomogeneity for monitoring and correcting susceptibility-induced geometric distortion in magnetic resonance images for precision therapy. A triple-gradient-echo acquisition was optimized for the whole liver B0 field estimation...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Grapho Publications, LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5892841/ https://www.ncbi.nlm.nih.gov/pubmed/29657962 http://dx.doi.org/10.18383/j.tom.2017.00003 |
Sumario: | We developed an optimized and robust method to estimate liver B0 field inhomogeneity for monitoring and correcting susceptibility-induced geometric distortion in magnetic resonance images for precision therapy. A triple-gradient-echo acquisition was optimized for the whole liver B0 field estimation within a single-exhale breath-hold scan on a 3 T scanner. To eliminate chemical-shift artifacts, fat signals were chosen in-phase between 2 echoes with an echo time difference (ΔTE) of 2.3 milliseconds. To avoid phase-wrapping, other 2 echoes provided a large field dynamic range (1/ΔTE) to cover the B0 field inhomogeneity. In addition, using high parallel imaging factor of 4 and a readout-bandwidth of 1955 Hz/pixel, an ∼18-second acquisition time for breath-held scans was achieved. A 2-step, 1-dimensional regularized method for the ΔB0 field map estimation was developed, tested and validated in phantom and patient studies. Our method was validated on a water phantom with fat components and air pockets; it yielded ΔB0-field maps that had no chemical-shift and phase-wrapping artifacts, and it had a <0.5 mm of geometric distortion near the air pockets. The ΔB0-field maps of the patients' abdominal regions were also free from phase-wrapping and chemical-shift artifacts. The maximum field inhomogeneity was found near the lung–liver interface, up to ∼300 Hz, resulting in ∼2 mm of distortions in anatomical images with a readout-bandwidth of 440 Hz/pixel. The field mapping method in the abdominal region is robust; it can be easily integrated in clinical workflow for patient-based quality control of magnetic resonance imaging geometric integrity. |
---|