Cargando…
Removal of muscular artifacts in EEG signals: a comparison of linear decomposition methods
The most common approach to reduce muscle artifacts in electroencephalographic signals is to linearly decompose the signals in order to separate artifactual from neural sources, using one of several variants of independent component analysis (ICA). Here we compare three of the most commonly used ICA...
Autores principales: | Frølich, Laura, Dowding, Irene |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893498/ https://www.ncbi.nlm.nih.gov/pubmed/29322469 http://dx.doi.org/10.1007/s40708-017-0074-6 |
Ejemplares similares
-
A Fast Approach to Removing Muscle Artifacts for EEG with Signal Serialization Based Ensemble Empirical Mode Decomposition
por: Dai, Yangyang, et al.
Publicado: (2021) -
Removal of Artifacts from EEG Signals: A Review
por: Jiang, Xiao, et al.
Publicado: (2019) -
Automatic Classification of Artifactual ICA-Components for Artifact Removal in EEG Signals
por: Winkler, Irene, et al.
Publicado: (2011) -
EEG artifact removal using sub-space decomposition, nonlinear dynamics, stationary wavelet transform and machine learning algorithms
por: Zangeneh Soroush, Morteza, et al.
Publicado: (2022) -
A Preliminary Study of Muscular Artifact Cancellation in Single-Channel EEG
por: Chen, Xun, et al.
Publicado: (2014)