Cargando…

Round-shape gold nanoparticles: effect of particle size and concentration on Arabidopsis thaliana root growth

Nowadays, due to a wide range of applications of nanoparticles (NPs) in many industrial areas, accumulations of those entities in environment pose a great risk. Owing to their inertness, noble metal NPs may remain in contaminated soils nearly unchanged for long time. Within this context, size-, shap...

Descripción completa

Detalles Bibliográficos
Autores principales: Siegel, Jakub, Záruba, Kamil, Švorčík, Václav, Kroumanová, Kristýna, Burketová, Lenka, Martinec, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893504/
https://www.ncbi.nlm.nih.gov/pubmed/29637317
http://dx.doi.org/10.1186/s11671-018-2510-9
Descripción
Sumario:Nowadays, due to a wide range of applications of nanoparticles (NPs) in many industrial areas, accumulations of those entities in environment pose a great risk. Owing to their inertness, noble metal NPs may remain in contaminated soils nearly unchanged for long time. Within this context, size-, shape-, and concentration-dependent uptake of particles by plants belongs to unexplored area. In this work, we present water solutions of biologically friendly synthesized spherical AuNPs with pretty narrow size distribution in size range from 10 to 18 nm. Their thorough characterization by atomic absorption spectroscopy, mass spectroscopy-equipped inductively coupled plasma, dynamic light scattering (DLS), and TEM methods was followed by the study of their effect on the growth of Arabidopsis thaliana (primary and lateral roots), in particle size- and concentration-dependent manner. Due to strictly round-shape form of AuNPs and absence of particle agglomeration, DLS-derived size and size distribution were in good concordance with those obtained from TEM. The length and number of A. thaliana lateral roots were significantly affected by all types of AuNPs. Smallest AuNPs at highest concentration inhibited length of primary roots and, in contrast, enhanced hair root growth.