Cargando…
Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers
Diabetes mellitus is a group of metabolic diseases in which blood sugar levels are too high. About 8.8% of the world was diabetic in 2017. It is projected that this will reach nearly 10% by 2045. The major challenge is that when machine learning-based classifiers are applied to such data sets for ri...
Autores principales: | Maniruzzaman, Md., Rahman, Md. Jahanur, Al-MehediHasan, Md., Suri, Harman S., Abedin, Md. Menhazul, El-Baz, Ayman, Suri, Jasjit S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893681/ https://www.ncbi.nlm.nih.gov/pubmed/29637403 http://dx.doi.org/10.1007/s10916-018-0940-7 |
Ejemplares similares
-
Risk factors of neonatal mortality and child mortality in Bangladesh
por: Maniruzzaman, Md, et al.
Publicado: (2018) -
Investigate the risk factors of stunting, wasting, and underweight among under-five Bangladeshi children and its prediction based on machine learning approach
por: Rahman, S. M. Jubaidur, et al.
Publicado: (2021) -
Predicting risks of low birth weight in Bangladesh with machine learning
por: Islam Pollob, S. M. Ashikul, et al.
Publicado: (2022) -
Metabolomic Biomarker Identification in Presence of Outliers and Missing Values
por: Kumar, Nishith, et al.
Publicado: (2017) -
Predicting the risk of hypertension using machine learning algorithms: A cross sectional study in Ethiopia
por: Islam, Md. Merajul, et al.
Publicado: (2023)