Cargando…
Automatic Change Detection for Real-Time Monitoring of EEG Signals
In recent years, automatic change detection for real-time monitoring of electroencephalogram (EEG) signals has attracted widespread interest with a large number of clinical applications. However, it is still a challenging problem. This paper presents a novel framework for this task where joint time-...
Autores principales: | Gao, Zhen, Lu, Guoliang, Yan, Peng, Lyu, Chen, Li, Xueyong, Shang, Wei, Xie, Zhaohong, Zhang, Wanming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893758/ https://www.ncbi.nlm.nih.gov/pubmed/29670541 http://dx.doi.org/10.3389/fphys.2018.00325 |
Ejemplares similares
-
Anomaly Detection in EEG Signals: A Case Study on Similarity Measure
por: Chen, Guangyuan, et al.
Publicado: (2020) -
SeriesSleepNet: an EEG time series model with partial data augmentation for automatic sleep stage scoring
por: Lee, Minji, et al.
Publicado: (2023) -
Attention Detection in Virtual Environments Using EEG Signals: A Scoping Review
por: Souza, Rhaíra Helena Caetano e, et al.
Publicado: (2021) -
Time in Brain: How Biological Rhythms Impact on EEG Signals and on EEG-Derived Brain Networks
por: Lehnertz, Klaus, et al.
Publicado: (2021) -
EEG-based real-time diagnostic system with developed dynamic 2TEMD and dynamic ApEn algorithms
por: Zhang, Ran, et al.
Publicado: (2023)