Cargando…
Quantitative Simulations Predict Treatment Strategies Against Fungal Infections in Virtual Neutropenic Patients
The condition of neutropenia, i.e., a reduced absolute neutrophil count in blood, constitutes a major risk factor for severe infections in the affected patients. Candida albicans and Candida glabrata are opportunistic pathogens and the most prevalent fungal species in the human microbiota. In immuno...
Autores principales: | Timme, Sandra, Lehnert, Teresa, Prauße, Maria T. E., Hünniger, Kerstin, Leonhardt, Ines, Kurzai, Oliver, Figge, Marc Thilo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5893870/ https://www.ncbi.nlm.nih.gov/pubmed/29670632 http://dx.doi.org/10.3389/fimmu.2018.00667 |
Ejemplares similares
-
Predictive Virtual Infection Modeling of Fungal Immune Evasion in Human Whole Blood
por: Prauße, Maria T. E., et al.
Publicado: (2018) -
Bottom-up modeling approach for the quantitative estimation of parameters in pathogen-host interactions
por: Lehnert, Teresa, et al.
Publicado: (2015) -
Comparative assessment of immune evasion mechanisms in human whole-blood infection assays by a systems biology approach
por: Lehnert, Teresa, et al.
Publicado: (2021) -
Ex vivo immune profiling in patient blood enables quantification of innate immune effector functions
por: Lehnert, Teresa, et al.
Publicado: (2021) -
A Virtual Infection Model Quantifies Innate Effector Mechanisms and Candida albicans Immune Escape in Human Blood
por: Hünniger, Kerstin, et al.
Publicado: (2014)