Cargando…

Analysis of neuroanatomical differences in mice with genetically modified serotonin transporters assessed by structural magnetic resonance imaging

BACKGROUND: The serotonin (5-HT) system has long been implicated in autism spectrum disorder (ASD) as indicated by elevated whole blood and platelet 5-HT, altered platelet and brain receptor and transporter binding, and genetic linkage and association findings. Based upon work in genetically modifie...

Descripción completa

Detalles Bibliográficos
Autores principales: Ellegood, Jacob, Yee, Yohan, Kerr, Travis M., Muller, Christopher L., Blakely, Randy D., Henkelman, R. Mark, Veenstra-VanderWeele, Jeremy, Lerch, Jason P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5894125/
https://www.ncbi.nlm.nih.gov/pubmed/29651330
http://dx.doi.org/10.1186/s13229-018-0210-z
Descripción
Sumario:BACKGROUND: The serotonin (5-HT) system has long been implicated in autism spectrum disorder (ASD) as indicated by elevated whole blood and platelet 5-HT, altered platelet and brain receptor and transporter binding, and genetic linkage and association findings. Based upon work in genetically modified mice, 5-HT is known to influence several aspects of brain development, but systematic neuroimaging studies have not previously been reported. In particular, the 5-HT transporter (serotonin transporter, SERT; 5-HTT) gene, Slc6a4, has been extensively studied. METHODS: Using a 7-T MRI and deformation-based morphometry, we assessed neuroanatomical differences in an Slc6a4 knockout mouse on a C57BL/6 genetic background, along with an Slc6a4 Ala56 knockin mouse on two different genetic backgrounds (129S and C57BL/6). RESULTS: Individually (same sex, same background, same genotype), the only differences found were in the female Slc6a4 knockout mouse; all the others had no significant differences. However, an analysis of variance across the whole study sample revealed a significant effect of Slc6a4 on the amygdala, thalamus, dorsal raphe nucleus, and lateral and frontal cortices. CONCLUSIONS: This work shows that an increase or decrease in SERT function has a significant effect on the neuroanatomy in 5-HT relevant regions, particularly the raphe nuclei. Notably, the Slc6a4 Ala56 knockin alone appears to have an insignificant, but suggestive, effect compared to the KO, which is consistent with Slc6a4 function. Despite the small number of 5-HT neurons and their localization to the brainstem, it is clear that 5-HT plays an important role in neuroanatomical organization. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13229-018-0210-z) contains supplementary material, which is available to authorized users.