Cargando…

Detection of human vital signs in hazardous environments by means of video magnification

In cases of natural disasters, epidemics or even in dangerous situations like an act of terrorism, battle fields, a shooting or a mountain accident, finding survivors is a challenge. In these kind of situations it is sometimes critical to know if a person has vital signs or not, without the need to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ordóñez, Celestino, Cabo, Carlos, Menéndez, Agustín, Bello, Antonio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895016/
https://www.ncbi.nlm.nih.gov/pubmed/29641613
http://dx.doi.org/10.1371/journal.pone.0195290
Descripción
Sumario:In cases of natural disasters, epidemics or even in dangerous situations like an act of terrorism, battle fields, a shooting or a mountain accident, finding survivors is a challenge. In these kind of situations it is sometimes critical to know if a person has vital signs or not, without the need to be in contact with the victim, thus avoiding jeopardizing the lives of the rescue workers. In this work, we propose the use of video magnification techniques to detect small movements in human bodies due to breathing that are invisible to the naked eye. Two different video magnification techniques, intensity-based and phase-based, were tested. The utility of these techniques to detect people who are alive but injured in risk situations was verified by simulating a scene with three people involved in an accident. Several factors such as camera stability, distance to the object, light conditions, magnification factor or computing time were analyzed. The results obtained were quite positive for both techniques, intensity-based method proving more adequate if the interest is in almost instant results whereas the phase-based method is more appropriate if processing time is not so relevant but the degree of magnification without excessive image noise.