Cargando…
Evaluation of prognostic models developed using standardised image features from different PET automated segmentation methods
BACKGROUND: Prognosis in oesophageal cancer (OC) is poor. The 5-year overall survival (OS) rate is approximately 15%. Personalised medicine is hoped to increase the 5- and 10-year OS rates. Quantitative analysis of PET is gaining substantial interest in prognostic research but requires the accurate...
Autores principales: | Parkinson, Craig, Foley, Kieran, Whybra, Philip, Hills, Robert, Roberts, Ashley, Marshall, Chris, Staffurth, John, Spezi, Emiliano |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895559/ https://www.ncbi.nlm.nih.gov/pubmed/29644499 http://dx.doi.org/10.1186/s13550-018-0379-3 |
Ejemplares similares
-
Assessing radiomic feature robustness to interpolation in (18)F-FDG PET imaging
por: Whybra, Philip, et al.
Publicado: (2019) -
Development and validation of a prognostic model incorporating texture analysis derived from standardised segmentation of PET in patients with oesophageal cancer
por: Foley, Kieran G, et al.
Publicado: (2017) -
Sensitivity of standardised radiomics algorithms to mask generation across different software platforms
por: Whybra, Philip, et al.
Publicado: (2023) -
Discovery of stable and prognostic CT-based radiomic features independent of contrast administration and dimensionality in oesophageal cancer
por: Piazzese, Concetta, et al.
Publicado: (2019) -
External Validation of Radiation-Induced Dyspnea Models on Esophageal Cancer Radiotherapy Patients
por: Shi, Zhenwei, et al.
Publicado: (2019)