Cargando…
Identification of Morus notabilis MADS-box genes and elucidation of the roles of MnMADS33 during endodormancy
The MADS-box genes encode transcriptional regulators with various functions especially during floral development. A total of 54 putative Morus notabilis MADS-box genes (MnMADSs) were identified and phylogenetically classified as either type I (17 genes) or type II (37 genes). The detected genes incl...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895635/ https://www.ncbi.nlm.nih.gov/pubmed/29643336 http://dx.doi.org/10.1038/s41598-018-23985-0 |
Sumario: | The MADS-box genes encode transcriptional regulators with various functions especially during floral development. A total of 54 putative Morus notabilis MADS-box genes (MnMADSs) were identified and phylogenetically classified as either type I (17 genes) or type II (37 genes). The detected genes included three FLOWERING LOCUS C-like (MnFLC-like) genes, MnMADS33, MnMADS50, and MnMADS7. MnFLC-like proteins could directly or indirectly repress promoter activity of the mulberry FLOWERING LOCUS T-like (MnFT) gene. Transgenic Arabidopsis thaliana overexpressing MnFLC-like genes exhibited delayed flowering and down-regulated expression of FT and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1). The gene expression analyses in floral bud indicated that MnMADS33 expression increased, while MnFT expression decreased during the induction of dormancy in response to cold conditions. Dormancy release resulted in the down-regulation of MnMADS33 expression and the up-regulation of MnFT expression. Furthermore, abscisic acid promoted the transcription of MnMADS33 and MnFT, although the expression level of MnFT gradually decreased. These results are consistent with the hypothesis that MnMADS33 negatively regulated the expression of MnFT to repress dormancy release and flowering in mulberry. This study may be relevant for future investigations regarding the effects of MnMADS genes on mulberry flowering development. |
---|