Cargando…
Sorption of pentachlorophenol (PCP) in the marine bottom sediments—batch sorption experiment at varying pressure
Study was undertaken to determine the effect of hydrostatic pressure on the sorption of pentachlorophenol (PCP). The experiment was conducted at atmospheric pressure (1000 hPa) and at increased pressure (6000 hPa) simulating conditions at the water depth of 50 m. The sorption of PCP was examined in...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895666/ https://www.ncbi.nlm.nih.gov/pubmed/29396827 http://dx.doi.org/10.1007/s11356-017-1076-x |
Sumario: | Study was undertaken to determine the effect of hydrostatic pressure on the sorption of pentachlorophenol (PCP). The experiment was conducted at atmospheric pressure (1000 hPa) and at increased pressure (6000 hPa) simulating conditions at the water depth of 50 m. The sorption of PCP was examined in an artificial environment (microcosm) consisting of the marine water and the bottom sediments from a Polish harbor and the southern Baltic Sea. The first part of the experiment comprised the determination of PCP sorption parameters in the microcosms and parameters of the sediments (organic matter content, conductivity) and of the overlying water (pH, ion concentration) at 1000 hPa. The second part of the experiment was conducted at 6000 hPa inside the hyperbaric chamber. The hyperbaric exposure affected parameters of the harbor sediments and the overlying water but had little influence on the concentration of PCP in the microcosms containing the southern Baltic Sea sediments. Considering the specific characteristics of the harbor sediments, it can be assumed that the impact of hydrostatic pressure on the sorption process of PCP at 50-m depth appears to be negligible. |
---|