Cargando…
Unsupervised Feature Learning With Winner-Takes-All Based STDP
We present a novel strategy for unsupervised feature learning in image applications inspired by the Spike-Timing-Dependent-Plasticity (STDP) biological learning rule. We show equivalence between rank order coding Leaky-Integrate-and-Fire neurons and ReLU artificial neurons when applied to non-tempor...
Autores principales: | Ferré, Paul, Mamalet, Franck, Thorpe, Simon J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895733/ https://www.ncbi.nlm.nih.gov/pubmed/29674961 http://dx.doi.org/10.3389/fncom.2018.00024 |
Ejemplares similares
-
STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning
por: Kappel, David, et al.
Publicado: (2014) -
Event-Based, Timescale Invariant Unsupervised Online Deep Learning With STDP
por: Thiele, Johannes C., et al.
Publicado: (2018) -
On the Self-Repair Role of Astrocytes in STDP Enabled Unsupervised SNNs
por: Rastogi, Mehul, et al.
Publicado: (2021) -
STDP and STDP variations with memristors for spiking neuromorphic learning systems
por: Serrano-Gotarredona, T., et al.
Publicado: (2013) -
Winner Takes All
por: Keyser, Scott
Publicado: (2014)