Cargando…

Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions

[Image: see text] The core of the loline family of insecticidal alkaloids is the bicyclic pyrrolizidine unit with an additional strained ether bridge between carbons 2 and 7. Previously reported genetic and in vivo biochemical analyses showed that the presumptive iron- and 2-oxoglutarate-dependent (...

Descripción completa

Detalles Bibliográficos
Autores principales: Pan, Juan, Bhardwaj, Minakshi, Zhang, Bo, Chang, Wei-chen, Schardl, Christopher L., Krebs, Carsten, Grossman, Robert B., Bollinger, J. Martin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895980/
https://www.ncbi.nlm.nih.gov/pubmed/29537853
http://dx.doi.org/10.1021/acs.biochem.8b00157
_version_ 1783313753841860608
author Pan, Juan
Bhardwaj, Minakshi
Zhang, Bo
Chang, Wei-chen
Schardl, Christopher L.
Krebs, Carsten
Grossman, Robert B.
Bollinger, J. Martin
author_facet Pan, Juan
Bhardwaj, Minakshi
Zhang, Bo
Chang, Wei-chen
Schardl, Christopher L.
Krebs, Carsten
Grossman, Robert B.
Bollinger, J. Martin
author_sort Pan, Juan
collection PubMed
description [Image: see text] The core of the loline family of insecticidal alkaloids is the bicyclic pyrrolizidine unit with an additional strained ether bridge between carbons 2 and 7. Previously reported genetic and in vivo biochemical analyses showed that the presumptive iron- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, LolO, is required for installation of the ether bridge upon the pathway intermediate, 1-exo-acetamidopyrrolizidine (AcAP). Here we show that LolO is, in fact, solely responsible for this biosynthetic four-electron oxidation. In sequential 2OG- and O(2)-consuming steps, LolO removes hydrogens from C2 and C7 of AcAP to form both carbon–oxygen bonds in N-acetylnorloline (NANL), the precursor to all other lolines. When supplied with substoichiometric 2OG, LolO only hydroxylates AcAP. At higher 2OG:AcAP ratios, the enzyme further processes the alcohol to the tricyclic NANL. Characterization of the alcohol intermediate by mass spectrometry and nuclear magnetic resonance spectroscopy shows that it is 2-endo-hydroxy-1-exo-acetamidopyrrolizidine (2-endo-OH-AcAP). Kinetic and spectroscopic analyses of reactions with site-specifically deuteriated AcAP substrates confirm that the C2–H bond is cleaved first and that the responsible intermediate is, as expected, an Fe(IV)–oxo (ferryl) complex. Analyses of the loline products from cultures fed with stereospecifically deuteriated AcAP precursors, proline and aspartic acid, establish that LolO removes the endo hydrogens from C2 and C7 and forms both new C–O bonds with retention of configuration. These findings delineate the pathway to an important class of natural insecticides and lay the foundation for mechanistic dissection of the chemically challenging oxacyclization reaction.
format Online
Article
Text
id pubmed-5895980
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-58959802018-04-13 Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions Pan, Juan Bhardwaj, Minakshi Zhang, Bo Chang, Wei-chen Schardl, Christopher L. Krebs, Carsten Grossman, Robert B. Bollinger, J. Martin Biochemistry [Image: see text] The core of the loline family of insecticidal alkaloids is the bicyclic pyrrolizidine unit with an additional strained ether bridge between carbons 2 and 7. Previously reported genetic and in vivo biochemical analyses showed that the presumptive iron- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, LolO, is required for installation of the ether bridge upon the pathway intermediate, 1-exo-acetamidopyrrolizidine (AcAP). Here we show that LolO is, in fact, solely responsible for this biosynthetic four-electron oxidation. In sequential 2OG- and O(2)-consuming steps, LolO removes hydrogens from C2 and C7 of AcAP to form both carbon–oxygen bonds in N-acetylnorloline (NANL), the precursor to all other lolines. When supplied with substoichiometric 2OG, LolO only hydroxylates AcAP. At higher 2OG:AcAP ratios, the enzyme further processes the alcohol to the tricyclic NANL. Characterization of the alcohol intermediate by mass spectrometry and nuclear magnetic resonance spectroscopy shows that it is 2-endo-hydroxy-1-exo-acetamidopyrrolizidine (2-endo-OH-AcAP). Kinetic and spectroscopic analyses of reactions with site-specifically deuteriated AcAP substrates confirm that the C2–H bond is cleaved first and that the responsible intermediate is, as expected, an Fe(IV)–oxo (ferryl) complex. Analyses of the loline products from cultures fed with stereospecifically deuteriated AcAP precursors, proline and aspartic acid, establish that LolO removes the endo hydrogens from C2 and C7 and forms both new C–O bonds with retention of configuration. These findings delineate the pathway to an important class of natural insecticides and lay the foundation for mechanistic dissection of the chemically challenging oxacyclization reaction. American Chemical Society 2018-03-14 2018-04-10 /pmc/articles/PMC5895980/ /pubmed/29537853 http://dx.doi.org/10.1021/acs.biochem.8b00157 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Pan, Juan
Bhardwaj, Minakshi
Zhang, Bo
Chang, Wei-chen
Schardl, Christopher L.
Krebs, Carsten
Grossman, Robert B.
Bollinger, J. Martin
Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title_full Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title_fullStr Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title_full_unstemmed Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title_short Installation of the Ether Bridge of Lolines by the Iron- and 2-Oxoglutarate-Dependent Oxygenase, LolO: Regio- and Stereochemistry of Sequential Hydroxylation and Oxacyclization Reactions
title_sort installation of the ether bridge of lolines by the iron- and 2-oxoglutarate-dependent oxygenase, lolo: regio- and stereochemistry of sequential hydroxylation and oxacyclization reactions
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895980/
https://www.ncbi.nlm.nih.gov/pubmed/29537853
http://dx.doi.org/10.1021/acs.biochem.8b00157
work_keys_str_mv AT panjuan installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT bhardwajminakshi installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT zhangbo installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT changweichen installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT schardlchristopherl installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT krebscarsten installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT grossmanrobertb installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions
AT bollingerjmartin installationoftheetherbridgeoflolinesbytheironand2oxoglutaratedependentoxygenaseloloregioandstereochemistryofsequentialhydroxylationandoxacyclizationreactions