Cargando…
Preoperative metabolic tumor volume of intrahepatic cholangiocarcinoma measured by (18)F-FDG-PET is associated with the KRAS mutation status and prognosis
BACKGROUND: Surgical resection remains the mainstay of curative treatment for intrahepatic cholangiocarcinoma (ICC). Prognosis after surgery is unsatisfactory despite improvements in treatment and post-operative clinical management. Despite developments in the molecular profiling of ICC, the preoper...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896043/ https://www.ncbi.nlm.nih.gov/pubmed/29642912 http://dx.doi.org/10.1186/s12967-018-1475-x |
Sumario: | BACKGROUND: Surgical resection remains the mainstay of curative treatment for intrahepatic cholangiocarcinoma (ICC). Prognosis after surgery is unsatisfactory despite improvements in treatment and post-operative clinical management. Despite developments in the molecular profiling of ICC, the preoperative prediction of prognosis remains a challenge. This study aimed to identify clinical prognostic indicators by investigating the molecular profiles of ICC and evaluating the preoperative imaging data of (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG-PET). METHODS: A retrospective analysis was performed on 50 consecutive patients with ICC who underwent curative hepatectomy after (18)F-FDG-PET examination. To evaluate the molecular profiles of ICC, KRAS mutation status was assessed in resected specimens. For the assessment of glucose uptake, we observed the expression of glucose transporter-1 (GLUT-1) by immunohistochemistry. The data of (18)F-FDG-PET were re-evaluated as follows: maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). Cut-off values were determined using receiver operating characteristic (ROC) curve analysis. Cumulative overall survival (OS) was analyzed using the Kaplan–Meier analysis. RESULTS: Overall, 16 (32.0%) patients had mutations in KRAS. Patients with mutated KRAS exhibited shorter OS than those with wild-type KRAS (5-year OS, 0% vs. 35.1%, P < 0.001). GLUT-1 expression was significantly higher in tumors with mutated KRAS than in tumors with wild-type KRAS (median, 4.0 vs. 1.0, P < 0.001). Survival was significantly different when stratified by expression of GLUT-1 (5-year OS, 0% vs. 46.5%, P <0.001). Among the (18)F-FDG-PET parameters, the MTV and TLG were significantly higher in the mutated KRAS group than in the wild-type KRAS group (P = 0.013 and P = 0.026, respectively). ROC curve analysis revealed a cut-off value of 38 for the MTV, with the highest accuracy (area under the curve = 0.789; 95% confidence interval, 0.581–0.902) for predicting KRAS mutation. This cut-off value permitted stratification of OS (high vs. low: 5-year OS, 13.1% vs. 36.7%, P = 0.008). CONCLUSIONS: High MTV is associated with KRAS mutation and poor postoperative outcomes in patients with ICC, suggesting that the MTV of ICC measured by (18)F-FDG-PET may provide useful information for tumor molecular profiles and prognosis. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12967-018-1475-x) contains supplementary material, which is available to authorized users. |
---|