Cargando…
A two-tiered unsupervised clustering approach for drug repositioning through heterogeneous data integration
BACKGROUND: Drug repositioning is the process of identifying new uses for existing drugs. Computational drug repositioning methods can reduce the time, costs and risks of drug development by automating the analysis of the relationships in pharmacology networks. Pharmacology networks are large and he...
Autores principales: | Hameed, Pathima Nusrath, Verspoor, Karin, Kusljic, Snezana, Halgamuge, Saman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896044/ https://www.ncbi.nlm.nih.gov/pubmed/29642848 http://dx.doi.org/10.1186/s12859-018-2123-4 |
Ejemplares similares
-
Positive-Unlabeled Learning for inferring drug interactions based on heterogeneous attributes
por: Hameed, Pathima Nusrath, et al.
Publicado: (2017) -
A physarum-inspired prize-collecting steiner tree approach to identify subnetworks for drug repositioning
por: Sun, Yahui, et al.
Publicado: (2016) -
Computational drug repositioning through heterogeneous network clustering
por: Wu, Chao, et al.
Publicado: (2013) -
Unsupervised discovery of microbial population structure within metagenomes using nucleotide base composition
por: Saeed, Isaam, et al.
Publicado: (2012) -
RepCOOL: computational drug repositioning via integrating heterogeneous biological networks
por: Fahimian, Ghazale, et al.
Publicado: (2020)