Cargando…
Deep learning meets ontologies: experiments to anchor the cardiovascular disease ontology in the biomedical literature
BACKGROUND: Automatic identification of term variants or acceptable alternative free-text terms for gene and protein names from the millions of biomedical publications is a challenging task. Ontologies, such as the Cardiovascular Disease Ontology (CVDO), capture domain knowledge in a computational f...
Autores principales: | Arguello Casteleiro, Mercedes, Demetriou, George, Read, Warren, Fernandez Prieto, Maria Jesus, Maroto, Nava, Maseda Fernandez, Diego, Nenadic, Goran, Klein, Julie, Keane, John, Stevens, Robert |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896136/ https://www.ncbi.nlm.nih.gov/pubmed/29650041 http://dx.doi.org/10.1186/s13326-018-0181-1 |
Ejemplares similares
-
The Proteasix Ontology
por: Arguello Casteleiro, Mercedes, et al.
Publicado: (2016) -
The BioHub Knowledge Base: Ontology and Repository for Sustainable Biosourcing
por: Read, Warren J., et al.
Publicado: (2016) -
Exploring semantic deep learning for building reliable and reusable one health knowledge from PubMed systematic reviews and veterinary clinical notes
por: Arguello-Casteleiro, Mercedes, et al.
Publicado: (2019) -
Semantic Deep Learning: Prior Knowledge and a Type of Four-Term Embedding Analogy to Acquire Treatments for Well-Known Diseases
por: Arguello Casteleiro, Mercedes, et al.
Publicado: (2020) -
Relations in biomedical ontologies
por: Smith, Barry, et al.
Publicado: (2005)