Cargando…
A Biologically Inspired Approach to Frequency Domain Feature Extraction for EEG Classification
Classification of electroencephalogram (EEG) signal is important in mental decoding for brain-computer interfaces (BCI). We introduced a feature extraction approach based on frequency domain analysis to improve the classification performance on different mental tasks using single-channel EEG. This b...
Autores principales: | Gursel Ozmen, Nurhan, Gumusel, Levent, Yang, Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896285/ https://www.ncbi.nlm.nih.gov/pubmed/29796060 http://dx.doi.org/10.1155/2018/9890132 |
Ejemplares similares
-
Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains
por: Al-Fahoum, Amjed S., et al.
Publicado: (2014) -
Classification of Targets and Distractors Present in Visual Hemifields Using Time-Frequency Domain EEG Features
por: Sweeti,, et al.
Publicado: (2018) -
Effective and extensible feature extraction method using genetic algorithm-based frequency-domain feature search for epileptic EEG multiclassification
por: Wen, Tingxi, et al.
Publicado: (2017) -
Integrated space–frequency–time domain feature extraction for MEG-based Alzheimer’s disease classification
por: Yang, Su, et al.
Publicado: (2021) -
Automated Feature Extraction on AsMap for Emotion Classification Using EEG
por: Ahmed, Md. Zaved Iqubal, et al.
Publicado: (2022)