Cargando…
Transcription elongation factors represent in vivo cancer dependencies in glioblastoma
Glioblastoma is a universally lethal cancer with a median survival of approximately 15 months(1). Despite substantial efforts to define druggable targets, there are no therapeutic options that meaningfully extend glioblastoma patient lifespan. While previous work has largely focused on in vitro cell...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896562/ https://www.ncbi.nlm.nih.gov/pubmed/28678782 http://dx.doi.org/10.1038/nature23000 |
_version_ | 1783313847562534912 |
---|---|
author | Miller, Tyler E. Liau, Brian B. Wallace, Lisa C. Morton, Andrew R. Xie, Qi Dixit, Deobrat Factor, Daniel C. Kim, Leo J. Y. Morrow, James J. Wu, Qiulian Mack, Stephen C. Hubert, Christopher G. Gillespie, Shawn M. Flavahan, William A. Hoffmann, Thomas Thummalapalli, Rohit Hemann, Michael T. Paddison, Patrick J. Horbinski, Craig M. Zuber, Johannes Scacheri, Peter C. Bernstein, Bradley E. Tesar, Paul J. Rich, Jeremy N. |
author_facet | Miller, Tyler E. Liau, Brian B. Wallace, Lisa C. Morton, Andrew R. Xie, Qi Dixit, Deobrat Factor, Daniel C. Kim, Leo J. Y. Morrow, James J. Wu, Qiulian Mack, Stephen C. Hubert, Christopher G. Gillespie, Shawn M. Flavahan, William A. Hoffmann, Thomas Thummalapalli, Rohit Hemann, Michael T. Paddison, Patrick J. Horbinski, Craig M. Zuber, Johannes Scacheri, Peter C. Bernstein, Bradley E. Tesar, Paul J. Rich, Jeremy N. |
author_sort | Miller, Tyler E. |
collection | PubMed |
description | Glioblastoma is a universally lethal cancer with a median survival of approximately 15 months(1). Despite substantial efforts to define druggable targets, there are no therapeutic options that meaningfully extend glioblastoma patient lifespan. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology(2–4) for use in orthotopic patient-derived xenograft (PDX) models, creating a high-throughput negative selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators necessary for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, supporting targeting the transcription elongation machinery as a therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of ‘cancer dependencies’ not identified by previous in vitro approaches, which could supply untapped opportunities for therapeutic intervention. |
format | Online Article Text |
id | pubmed-5896562 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
record_format | MEDLINE/PubMed |
spelling | pubmed-58965622018-04-12 Transcription elongation factors represent in vivo cancer dependencies in glioblastoma Miller, Tyler E. Liau, Brian B. Wallace, Lisa C. Morton, Andrew R. Xie, Qi Dixit, Deobrat Factor, Daniel C. Kim, Leo J. Y. Morrow, James J. Wu, Qiulian Mack, Stephen C. Hubert, Christopher G. Gillespie, Shawn M. Flavahan, William A. Hoffmann, Thomas Thummalapalli, Rohit Hemann, Michael T. Paddison, Patrick J. Horbinski, Craig M. Zuber, Johannes Scacheri, Peter C. Bernstein, Bradley E. Tesar, Paul J. Rich, Jeremy N. Nature Article Glioblastoma is a universally lethal cancer with a median survival of approximately 15 months(1). Despite substantial efforts to define druggable targets, there are no therapeutic options that meaningfully extend glioblastoma patient lifespan. While previous work has largely focused on in vitro cellular models, here we demonstrate a more physiologically relevant approach to target discovery in glioblastoma. We adapted pooled RNA interference (RNAi) screening technology(2–4) for use in orthotopic patient-derived xenograft (PDX) models, creating a high-throughput negative selection screening platform in a functional in vivo tumour microenvironment. Using this approach, we performed parallel in vivo and in vitro screens and discovered that the chromatin and transcriptional regulators necessary for cell survival in vivo are non-overlapping with those required in vitro. We identified transcription pause-release and elongation factors as one set of in vivo-specific cancer dependencies and determined that these factors are necessary for enhancer-mediated transcriptional adaptations that enable cells to survive the tumour microenvironment. Our lead hit, JMJD6, mediates the upregulation of in vivo stress and stimulus response pathways through enhancer-mediated transcriptional pause-release, promoting cell survival specifically in vivo. Targeting JMJD6 or other identified elongation factors extends survival in orthotopic xenograft mouse models, supporting targeting the transcription elongation machinery as a therapeutic strategy for glioblastoma. More broadly, this study demonstrates the power of in vivo phenotypic screening to identify new classes of ‘cancer dependencies’ not identified by previous in vitro approaches, which could supply untapped opportunities for therapeutic intervention. 2017-07-05 2017-07-20 /pmc/articles/PMC5896562/ /pubmed/28678782 http://dx.doi.org/10.1038/nature23000 Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Miller, Tyler E. Liau, Brian B. Wallace, Lisa C. Morton, Andrew R. Xie, Qi Dixit, Deobrat Factor, Daniel C. Kim, Leo J. Y. Morrow, James J. Wu, Qiulian Mack, Stephen C. Hubert, Christopher G. Gillespie, Shawn M. Flavahan, William A. Hoffmann, Thomas Thummalapalli, Rohit Hemann, Michael T. Paddison, Patrick J. Horbinski, Craig M. Zuber, Johannes Scacheri, Peter C. Bernstein, Bradley E. Tesar, Paul J. Rich, Jeremy N. Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title | Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title_full | Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title_fullStr | Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title_full_unstemmed | Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title_short | Transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
title_sort | transcription elongation factors represent in vivo cancer dependencies in glioblastoma |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896562/ https://www.ncbi.nlm.nih.gov/pubmed/28678782 http://dx.doi.org/10.1038/nature23000 |
work_keys_str_mv | AT millertylere transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT liaubrianb transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT wallacelisac transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT mortonandrewr transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT xieqi transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT dixitdeobrat transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT factordanielc transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT kimleojy transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT morrowjamesj transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT wuqiulian transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT mackstephenc transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT hubertchristopherg transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT gillespieshawnm transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT flavahanwilliama transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT hoffmannthomas transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT thummalapallirohit transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT hemannmichaelt transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT paddisonpatrickj transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT horbinskicraigm transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT zuberjohannes transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT scacheripeterc transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT bernsteinbradleye transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT tesarpaulj transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma AT richjeremyn transcriptionelongationfactorsrepresentinvivocancerdependenciesinglioblastoma |