Cargando…
GUILD: GUidance for Information about Linking Data sets†
Record linkage of administrative and survey data is increasingly used to generate evidence to inform policy and services. Although a powerful and efficient way of generating new information from existing data sets, errors related to data processing before, during and after linkage can bias results....
Autores principales: | Gilbert, Ruth, Lafferty, Rosemary, Hagger-Johnson, Gareth, Harron, Katie, Zhang, Li-Chun, Smith, Peter, Dibben, Chris, Goldstein, Harvey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896589/ https://www.ncbi.nlm.nih.gov/pubmed/28369581 http://dx.doi.org/10.1093/pubmed/fdx037 |
Ejemplares similares
-
Probabilistic linking to enhance deterministic algorithms and reduce linkage errors in hospital administrative data
por: Hagger-Johnson, Gareth, et al.
Publicado: (2017) -
Utilising identifier error variation in linkage of large administrative data sources
por: Harron, Katie, et al.
Publicado: (2017) -
Combining deterministic and probabilistic matching to reduce data linkage errors in hospital administrative data
por: Hagger-Johnson, Gareth, et al.
Publicado: (2017) -
Data linkage errors in hospital administrative data when applying a pseudonymisation algorithm to paediatric intensive care records
por: Hagger-Johnson, Gareth, et al.
Publicado: (2015) -
Challenges in administrative data linkage for research
por: Harron, Katie, et al.
Publicado: (2017)