Cargando…

Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle

Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restorat...

Descripción completa

Detalles Bibliográficos
Autores principales: Wilson, Rebecca J., Drake, Joshua C., Cui, Di, Lewellen, Bevan M., Fisher, Carleigh C., Zhang, Mei, Kashatus, David F., Palmer, Lisa A., Murphy, Michael P., Yan, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896769/
https://www.ncbi.nlm.nih.gov/pubmed/29432799
http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.006
_version_ 1783313870607089664
author Wilson, Rebecca J.
Drake, Joshua C.
Cui, Di
Lewellen, Bevan M.
Fisher, Carleigh C.
Zhang, Mei
Kashatus, David F.
Palmer, Lisa A.
Murphy, Michael P.
Yan, Zhen
author_facet Wilson, Rebecca J.
Drake, Joshua C.
Cui, Di
Lewellen, Bevan M.
Fisher, Carleigh C.
Zhang, Mei
Kashatus, David F.
Palmer, Lisa A.
Murphy, Michael P.
Yan, Zhen
author_sort Wilson, Rebecca J.
collection PubMed
description Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restoration. However, little is known about the underlying mechanism(s) and hence the lack of effective interventions. New evidence suggests that mitochondrial oxidative stress plays a causal role in IR injury, which can be precluded by enhancing mitochondrial protein S-nitrosation (SNO). To elucidate the role of IR and mitochondrial protein SNO in skeletal muscle, we utilized a clinically relevant model and showed that IR resulted in significant muscle and motor nerve injuries with evidence of elevated muscle creatine kinase in the serum, denervation at NMJ, myofiber degeneration and regeneration, as well as muscle atrophy. Interestingly, we observed that neuromuscular transmission improved prior to muscle recovery, suggesting the importance of the motor nerve in muscle functional recovery. Injection of a mitochondria-targeted S-nitrosation enhancing agent, MitoSNO, into ischemic muscle prior to reperfusion reduced mitochondrial oxidative stress in the motor nerve and NMJ, attenuated denervation at NMJ, and resulted in accelerated functional recovery of the muscle. These findings demonstrate that enhancing mitochondrial protein SNO protects against IR-induced denervation at NMJ in skeletal muscle and accelerates functional regeneration. This could be an efficacious intervention for protecting neuromuscular injury under the condition of IR and other related pathological conditions.
format Online
Article
Text
id pubmed-5896769
institution National Center for Biotechnology Information
language English
publishDate 2018
record_format MEDLINE/PubMed
spelling pubmed-58967692018-04-12 Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle Wilson, Rebecca J. Drake, Joshua C. Cui, Di Lewellen, Bevan M. Fisher, Carleigh C. Zhang, Mei Kashatus, David F. Palmer, Lisa A. Murphy, Michael P. Yan, Zhen Free Radic Biol Med Article Deterioration of neuromuscular junction (NMJ) integrity and function is causal to muscle atrophy and frailty, ultimately hindering quality of life and increasing the risk of death. In particular, NMJ is vulnerable to ischemia reperfusion (IR) injury when blood flow is restricted followed by restoration. However, little is known about the underlying mechanism(s) and hence the lack of effective interventions. New evidence suggests that mitochondrial oxidative stress plays a causal role in IR injury, which can be precluded by enhancing mitochondrial protein S-nitrosation (SNO). To elucidate the role of IR and mitochondrial protein SNO in skeletal muscle, we utilized a clinically relevant model and showed that IR resulted in significant muscle and motor nerve injuries with evidence of elevated muscle creatine kinase in the serum, denervation at NMJ, myofiber degeneration and regeneration, as well as muscle atrophy. Interestingly, we observed that neuromuscular transmission improved prior to muscle recovery, suggesting the importance of the motor nerve in muscle functional recovery. Injection of a mitochondria-targeted S-nitrosation enhancing agent, MitoSNO, into ischemic muscle prior to reperfusion reduced mitochondrial oxidative stress in the motor nerve and NMJ, attenuated denervation at NMJ, and resulted in accelerated functional recovery of the muscle. These findings demonstrate that enhancing mitochondrial protein SNO protects against IR-induced denervation at NMJ in skeletal muscle and accelerates functional regeneration. This could be an efficacious intervention for protecting neuromuscular injury under the condition of IR and other related pathological conditions. 2018-02-09 2018-03 /pmc/articles/PMC5896769/ /pubmed/29432799 http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.006 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Wilson, Rebecca J.
Drake, Joshua C.
Cui, Di
Lewellen, Bevan M.
Fisher, Carleigh C.
Zhang, Mei
Kashatus, David F.
Palmer, Lisa A.
Murphy, Michael P.
Yan, Zhen
Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title_full Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title_fullStr Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title_full_unstemmed Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title_short Mitochondrial protein S-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
title_sort mitochondrial protein s-nitrosation protects against ischemia reperfusion-induced denervation at neuromuscular junction in skeletal muscle
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896769/
https://www.ncbi.nlm.nih.gov/pubmed/29432799
http://dx.doi.org/10.1016/j.freeradbiomed.2018.02.006
work_keys_str_mv AT wilsonrebeccaj mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT drakejoshuac mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT cuidi mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT lewellenbevanm mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT fishercarleighc mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT zhangmei mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT kashatusdavidf mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT palmerlisaa mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT murphymichaelp mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle
AT yanzhen mitochondrialproteinsnitrosationprotectsagainstischemiareperfusioninduceddenervationatneuromuscularjunctioninskeletalmuscle