Cargando…

Yeast Aim21/Tda2 both regulates free actin by reducing barbed end assembly and forms a complex with Cap1/Cap2 to balance actin assembly between patches and cables

How cells balance the incorporation of actin into diverse structures is poorly understood. In budding yeast, a single actin monomer pool is used to build both actin cables involved in polarized growth and actin cortical patches involved in endocytosis. Here we report how Aim21/Tda2 is recruited to t...

Descripción completa

Detalles Bibliográficos
Autores principales: Shin, Myungjoo, van Leeuwen, Jolanda, Boone, Charles, Bretscher, Anthony
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5896931/
https://www.ncbi.nlm.nih.gov/pubmed/29467252
http://dx.doi.org/10.1091/mbc.E17-10-0592
Descripción
Sumario:How cells balance the incorporation of actin into diverse structures is poorly understood. In budding yeast, a single actin monomer pool is used to build both actin cables involved in polarized growth and actin cortical patches involved in endocytosis. Here we report how Aim21/Tda2 is recruited to the cortical region of actin patches, where it negatively regulates actin assembly to elevate the available actin monomer pool. Aim21 has four polyproline regions and is recruited by two SH3-containing patch proteins, Bbc1 and Abp1. The C-terminal region, which is required for its function, binds Tda2. Cell biological and biochemical data reveal that Aim21/Tda2 is a negative regulator of barbed end filamentous actin (F-actin) assembly, and this activity is necessary for efficient endocytosis and plays a pivotal role in balancing the distribution of actin between cables and patches. Aim21/Tda2 also forms a complex with the F-actin barbed end capping protein Cap1/Cap2, revealing an interplay between regulators and showing the complexity of regulation of barbed end assembly.