Cargando…
Two-dimensional electronic transport and surface electron accumulation in MoS(2)
Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to hav...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897365/ https://www.ncbi.nlm.nih.gov/pubmed/29650960 http://dx.doi.org/10.1038/s41467-018-03824-6 |
Sumario: | Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS(2)) is a major n-doping source. The surface electron concentration of MoS(2) is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS(2) nanoflakes was observed. The transfer length method suggested the current transport in MoS(2) following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation. |
---|