Cargando…

Duplication and diversification of lectin receptor-like kinases (LecRLK) genes in soybean

Lectin receptor-like kinases (LecRLKs) play important roles in plant development and stress responses. Although genome-wide studies of LecRLKs have been performed in several species, a comprehensive analysis including evolutionary, structural and functional analysis has not been carried out in soybe...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ping-Li, Huang, Yuan, Shi, Peng-Hao, Yu, Meng, Xie, Jian-Bo, Xie, LuLu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897391/
https://www.ncbi.nlm.nih.gov/pubmed/29651041
http://dx.doi.org/10.1038/s41598-018-24266-6
Descripción
Sumario:Lectin receptor-like kinases (LecRLKs) play important roles in plant development and stress responses. Although genome-wide studies of LecRLKs have been performed in several species, a comprehensive analysis including evolutionary, structural and functional analysis has not been carried out in soybean (Glycine max). In this study, we identified 185 putative LecRLK genes in the soybean genome, including 123 G-type, 60 L-type and 2 C-type LecRLK genes. Tandem duplication and segmental duplication appear to be the main mechanisms of gene expansion in the soybean LecRLK (GmLecRLK) gene family. According to our phylogenetic analysis, G-type and L-type GmLecRLK genes can be organized into fourteen and eight subfamilies, respectively. The subfamilies within the G-type GmLecRLKs differ from each other in gene structure and/or protein domains and motifs, which indicates that the subfamilies have diverged. The evolution of L-type GmLecRLKs has been more conservative: most genes retain the same gene structures and nearly the same protein domain and motif architectures. Furthermore, the expression profiles of G-type and L-type GmLecRLK genes show evidence of functional redundancy and divergence within each group. Our results contribute to a better understanding of the evolution and function of soybean LecRLKs and provide a framework for further functional investigation of them.