Cargando…
A Study of the Effects of Electrode Number and Decoding Algorithm on Online EEG-Based BCI Behavioral Performance
Motor imagery–based brain–computer interface (BCI) using electroencephalography (EEG) has demonstrated promising applications by directly decoding users' movement related mental intention. The selection of control signals, e.g., the channel configuration and decoding algorithm, plays a vital ro...
Autores principales: | Meng, Jianjun, Edelman, Bradley J., Olsoe, Jaron, Jacobs, Gabriel, Zhang, Shuying, Beyko, Angeliki, He, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897442/ https://www.ncbi.nlm.nih.gov/pubmed/29681792 http://dx.doi.org/10.3389/fnins.2018.00227 |
Ejemplares similares
-
Author Correction: Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks
por: Meng, Jianjun, et al.
Publicado: (2020) -
Noninvasive Electroencephalogram Based Control of a Robotic Arm for Reach and Grasp Tasks
por: Meng, Jianjun, et al.
Publicado: (2016) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
Dataset Evaluation Method and Application for Performance Testing of SSVEP-BCI Decoding Algorithm
por: Liang, Liyan, et al.
Publicado: (2023) -
A High-Speed SSVEP-Based BCI Using Dry EEG Electrodes
por: Xing, Xiao, et al.
Publicado: (2018)