Cargando…

Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides

Systems simultaneously exhibiting superconductivity and spin–orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superco...

Descripción completa

Detalles Bibliográficos
Autores principales: de la Barrera, Sergio C., Sinko, Michael R., Gopalan, Devashish P., Sivadas, Nikhil, Seyler, Kyle L., Watanabe, Kenji, Taniguchi, Takashi, Tsen, Adam W., Xu, Xiaodong, Xiao, Di, Hunt, Benjamin M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897486/
https://www.ncbi.nlm.nih.gov/pubmed/29650994
http://dx.doi.org/10.1038/s41467-018-03888-4
_version_ 1783313971201179648
author de la Barrera, Sergio C.
Sinko, Michael R.
Gopalan, Devashish P.
Sivadas, Nikhil
Seyler, Kyle L.
Watanabe, Kenji
Taniguchi, Takashi
Tsen, Adam W.
Xu, Xiaodong
Xiao, Di
Hunt, Benjamin M.
author_facet de la Barrera, Sergio C.
Sinko, Michael R.
Gopalan, Devashish P.
Sivadas, Nikhil
Seyler, Kyle L.
Watanabe, Kenji
Taniguchi, Takashi
Tsen, Adam W.
Xu, Xiaodong
Xiao, Di
Hunt, Benjamin M.
author_sort de la Barrera, Sergio C.
collection PubMed
description Systems simultaneously exhibiting superconductivity and spin–orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin–orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin–orbit coupling in the atomic layer limit, metallic 2H-TaS(2) and 2H-NbSe(2). We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin–orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions.
format Online
Article
Text
id pubmed-5897486
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-58974862018-04-16 Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides de la Barrera, Sergio C. Sinko, Michael R. Gopalan, Devashish P. Sivadas, Nikhil Seyler, Kyle L. Watanabe, Kenji Taniguchi, Takashi Tsen, Adam W. Xu, Xiaodong Xiao, Di Hunt, Benjamin M. Nat Commun Article Systems simultaneously exhibiting superconductivity and spin–orbit coupling are predicted to provide a route toward topological superconductivity and unconventional electron pairing, driving significant contemporary interest in these materials. Monolayer transition-metal dichalcogenide (TMD) superconductors in particular lack inversion symmetry, yielding an antisymmetric form of spin–orbit coupling that admits both spin-singlet and spin-triplet components of the superconducting wavefunction. Here, we present an experimental and theoretical study of two intrinsic TMD superconductors with large spin–orbit coupling in the atomic layer limit, metallic 2H-TaS(2) and 2H-NbSe(2). We investigate the superconducting properties as the material is reduced to monolayer thickness and show that high-field measurements point to the largest upper critical field thus reported for an intrinsic TMD superconductor. In few-layer samples, we find the enhancement of the upper critical field is sustained by the dominance of spin–orbit coupling over weak interlayer coupling, providing additional candidate systems for supporting unconventional superconducting states in two dimensions. Nature Publishing Group UK 2018-04-12 /pmc/articles/PMC5897486/ /pubmed/29650994 http://dx.doi.org/10.1038/s41467-018-03888-4 Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
de la Barrera, Sergio C.
Sinko, Michael R.
Gopalan, Devashish P.
Sivadas, Nikhil
Seyler, Kyle L.
Watanabe, Kenji
Taniguchi, Takashi
Tsen, Adam W.
Xu, Xiaodong
Xiao, Di
Hunt, Benjamin M.
Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title_full Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title_fullStr Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title_full_unstemmed Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title_short Tuning Ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
title_sort tuning ising superconductivity with layer and spin–orbit coupling in two-dimensional transition-metal dichalcogenides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897486/
https://www.ncbi.nlm.nih.gov/pubmed/29650994
http://dx.doi.org/10.1038/s41467-018-03888-4
work_keys_str_mv AT delabarrerasergioc tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT sinkomichaelr tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT gopalandevashishp tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT sivadasnikhil tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT seylerkylel tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT watanabekenji tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT taniguchitakashi tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT tsenadamw tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT xuxiaodong tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT xiaodi tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides
AT huntbenjaminm tuningisingsuperconductivitywithlayerandspinorbitcouplingintwodimensionaltransitionmetaldichalcogenides