Cargando…
Variable selection in generalized random coefficient autoregressive models
In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike information...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897497/ https://www.ncbi.nlm.nih.gov/pubmed/29674836 http://dx.doi.org/10.1186/s13660-018-1680-4 |
_version_ | 1783313973821571072 |
---|---|
author | Zhao, Zhiwen Liu, Yangping Peng, Cuixin |
author_facet | Zhao, Zhiwen Liu, Yangping Peng, Cuixin |
author_sort | Zhao, Zhiwen |
collection | PubMed |
description | In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike information criterion (AIC) and a Bayesian information criterion (BIC). |
format | Online Article Text |
id | pubmed-5897497 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-58974972018-04-17 Variable selection in generalized random coefficient autoregressive models Zhao, Zhiwen Liu, Yangping Peng, Cuixin J Inequal Appl Research In this paper, we consider the variable selection problem of the generalized random coefficient autoregressive model (GRCA). Instead of parametric likelihood, we use non-parametric empirical likelihood in the information theoretic approach. We propose an empirical likelihood-based Akaike information criterion (AIC) and a Bayesian information criterion (BIC). Springer International Publishing 2018-04-12 2018 /pmc/articles/PMC5897497/ /pubmed/29674836 http://dx.doi.org/10.1186/s13660-018-1680-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. |
spellingShingle | Research Zhao, Zhiwen Liu, Yangping Peng, Cuixin Variable selection in generalized random coefficient autoregressive models |
title | Variable selection in generalized random coefficient autoregressive models |
title_full | Variable selection in generalized random coefficient autoregressive models |
title_fullStr | Variable selection in generalized random coefficient autoregressive models |
title_full_unstemmed | Variable selection in generalized random coefficient autoregressive models |
title_short | Variable selection in generalized random coefficient autoregressive models |
title_sort | variable selection in generalized random coefficient autoregressive models |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897497/ https://www.ncbi.nlm.nih.gov/pubmed/29674836 http://dx.doi.org/10.1186/s13660-018-1680-4 |
work_keys_str_mv | AT zhaozhiwen variableselectioningeneralizedrandomcoefficientautoregressivemodels AT liuyangping variableselectioningeneralizedrandomcoefficientautoregressivemodels AT pengcuixin variableselectioningeneralizedrandomcoefficientautoregressivemodels |