Cargando…

Novel Indole-fused benzo-oxazepines (IFBOs) inhibit invasion of hepatocellular carcinoma by targeting IL-6 mediated JAK2/STAT3 oncogenic signals

Inspired by the well-documented tumor protecting ability of paullones, recently, we synthesized novel paullone-like scaffolds, indole-fused benzo-oxazepines (IFBOs), and screened them against hepatocellular carcinoma (HCC) specific Hep-G2 cells. Three of the synthesized compounds significantly atten...

Descripción completa

Detalles Bibliográficos
Autores principales: Singh, Ashok K., Bhadauria, Archana S., Kumar, Umesh, Raj, Vinit, Rai, Amit, Kumar, Pranesh, Keshari, Amit K., Kumar, Dinesh, Maity, Biswanath, Nath, Sneha, Prakash, Anand, Saha, Sudipta
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897576/
https://www.ncbi.nlm.nih.gov/pubmed/29651140
http://dx.doi.org/10.1038/s41598-018-24288-0
Descripción
Sumario:Inspired by the well-documented tumor protecting ability of paullones, recently, we synthesized novel paullone-like scaffolds, indole-fused benzo-oxazepines (IFBOs), and screened them against hepatocellular carcinoma (HCC) specific Hep-G2 cells. Three of the synthesized compounds significantly attenuated the progression of HCC in vitro. By computational studies, we further discovered that IFBOs exhibited a stable binding complex with the IL-6 receptor. In this context, we investigated in vivo study using the nitrosodiethyl amine (NDEA)-induced HCC model, which strengthened our previous findings by showing the blockade of the IL-6 mediated JAK2/STAT3 oncogenic signaling pathway. Treatment with IFBOs showed remarkable attenuation of cellular proliferation, as evidenced through a decrease in the number of nodules, restoration of body weight, oxidative stress parameters, liver marker enzymes and histological architecture. Interestingly, using a metabolomic approach we further discovered that IFBOs can restore the perturbed metabolic profile associated with the HCC condition to normalcy. Particularly, the efficacy of compound 6a for an anti-HCC response was significantly better than the marketed chemotherapeutic drug, 5-fluorouracil. Altogether, these remarkable findings open up possibilities of developing IFBOs as novel future candidate molecules for plausible alternatives for HCC treatment.