Cargando…
The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics
Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient fo...
Autores principales: | Yao, Kun, Herr, John E., Toth, David W., Mckintyre, Ryker, Parkhill, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897848/ https://www.ncbi.nlm.nih.gov/pubmed/29719699 http://dx.doi.org/10.1039/c7sc04934j |
Ejemplares similares
-
Hands-on neural networks with TensorFlow 2.0: understand TensorFlow, from static graph to eager execution, and design neural networks
por: Galeone, Paolo
Publicado: (2019) -
Augmentation in Healthcare: Augmented Biosignal Using Deep Learning and Tensor Representation
por: Ibrahim, Marwa, et al.
Publicado: (2021) -
NEMO 3, a detector to investigate the neutrino mass in the 0.1 eV range
por: Dassié, D, et al.
Publicado: (1994) -
Low-Cost GRIN-Lens-Based Nephelometric Turbidity Sensing in the Range of 0.1–1000 NTU
por: Metzger, Michael, et al.
Publicado: (2018) -
Botanical Composition and Diet Quality of the Vicuñas (Vicugna vicugna Mol.) in Highland Range of Parinacota, Chile
por: Castellaro, Giorgio, et al.
Publicado: (2020)