Cargando…
Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines
Somatostatin analogs (SSA) are well-established antisecretory drugs in functionally active neuroendocrine tumors (NET). Two placebo-controlled trials have recently demonstrated significant improvement of progression-free survival under SSA treatment. Furthermore, somatostatin receptor (SSTR) overexp...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897986/ https://www.ncbi.nlm.nih.gov/pubmed/29681888 http://dx.doi.org/10.3389/fendo.2018.00146 |
_version_ | 1783314046695505920 |
---|---|
author | Exner, Samantha Prasad, Vikas Wiedenmann, Bertram Grötzinger, Carsten |
author_facet | Exner, Samantha Prasad, Vikas Wiedenmann, Bertram Grötzinger, Carsten |
author_sort | Exner, Samantha |
collection | PubMed |
description | Somatostatin analogs (SSA) are well-established antisecretory drugs in functionally active neuroendocrine tumors (NET). Two placebo-controlled trials have recently demonstrated significant improvement of progression-free survival under SSA treatment. Furthermore, somatostatin receptor (SSTR) overexpression in NET has also been utilized for diagnostic imaging and peptide receptor radionuclide therapy (PRRT). However, PRRT in NET is associated mostly with partial and minor remission, while other radionuclide therapies reach complete remissions in up to 75% of cases. This study assessed a potential radiosensitizing effect of SSA treatment in five established NET cell line models: BON, QGP-1, LCC-18, H727, and UMC-11. Irradiation was found to significantly inhibit proliferation, while no additional effect by octreotide treatment was observed. Intriguingly, no impact of SSA treatment alone was found in any of these NET cell lines when systematically analyzing cell viability, proliferation, and cell cycle distribution. Investigation of the causes for this octreotide resistance led to demonstration of low octreotide binding and scarce SSTR, specifically SSTR2 expression as compared to levels found in human NETs. The resistance toward SSA treatment in viability and proliferation assays could not be overcome by re-expression of SSTR2 in two of the cell lines. These results provide systematic evidence for a lack of authentic, tumor-like SSTR expression, and function in five frequently used NET cell line models and point to the need for more physiologic tumor model systems. |
format | Online Article Text |
id | pubmed-5897986 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-58979862018-04-20 Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines Exner, Samantha Prasad, Vikas Wiedenmann, Bertram Grötzinger, Carsten Front Endocrinol (Lausanne) Endocrinology Somatostatin analogs (SSA) are well-established antisecretory drugs in functionally active neuroendocrine tumors (NET). Two placebo-controlled trials have recently demonstrated significant improvement of progression-free survival under SSA treatment. Furthermore, somatostatin receptor (SSTR) overexpression in NET has also been utilized for diagnostic imaging and peptide receptor radionuclide therapy (PRRT). However, PRRT in NET is associated mostly with partial and minor remission, while other radionuclide therapies reach complete remissions in up to 75% of cases. This study assessed a potential radiosensitizing effect of SSA treatment in five established NET cell line models: BON, QGP-1, LCC-18, H727, and UMC-11. Irradiation was found to significantly inhibit proliferation, while no additional effect by octreotide treatment was observed. Intriguingly, no impact of SSA treatment alone was found in any of these NET cell lines when systematically analyzing cell viability, proliferation, and cell cycle distribution. Investigation of the causes for this octreotide resistance led to demonstration of low octreotide binding and scarce SSTR, specifically SSTR2 expression as compared to levels found in human NETs. The resistance toward SSA treatment in viability and proliferation assays could not be overcome by re-expression of SSTR2 in two of the cell lines. These results provide systematic evidence for a lack of authentic, tumor-like SSTR expression, and function in five frequently used NET cell line models and point to the need for more physiologic tumor model systems. Frontiers Media S.A. 2018-04-06 /pmc/articles/PMC5897986/ /pubmed/29681888 http://dx.doi.org/10.3389/fendo.2018.00146 Text en Copyright © 2018 Exner, Prasad, Wiedenmann and Grötzinger. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Endocrinology Exner, Samantha Prasad, Vikas Wiedenmann, Bertram Grötzinger, Carsten Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title | Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title_full | Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title_fullStr | Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title_full_unstemmed | Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title_short | Octreotide Does Not Inhibit Proliferation in Five Neuroendocrine Tumor Cell Lines |
title_sort | octreotide does not inhibit proliferation in five neuroendocrine tumor cell lines |
topic | Endocrinology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5897986/ https://www.ncbi.nlm.nih.gov/pubmed/29681888 http://dx.doi.org/10.3389/fendo.2018.00146 |
work_keys_str_mv | AT exnersamantha octreotidedoesnotinhibitproliferationinfiveneuroendocrinetumorcelllines AT prasadvikas octreotidedoesnotinhibitproliferationinfiveneuroendocrinetumorcelllines AT wiedenmannbertram octreotidedoesnotinhibitproliferationinfiveneuroendocrinetumorcelllines AT grotzingercarsten octreotidedoesnotinhibitproliferationinfiveneuroendocrinetumorcelllines |