Cargando…
The bHLH Protein Nulp1 is Essential for Femur Development Via Acting as a Cofactor in Wnt Signaling in Drosophila
BACKGROUND: The basic helix-loop-helix (bHLH) protein families are a large class of transcription factors, which are associated with cell proliferation, tissue differentiation, and other important development processes. We reported that the Nuclear localized protein-1 (Nulp1) might act as a novel bH...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898038/ https://www.ncbi.nlm.nih.gov/pubmed/29437009 http://dx.doi.org/10.2174/1566524018666180212145714 |
Sumario: | BACKGROUND: The basic helix-loop-helix (bHLH) protein families are a large class of transcription factors, which are associated with cell proliferation, tissue differentiation, and other important development processes. We reported that the Nuclear localized protein-1 (Nulp1) might act as a novel bHLH transcriptional factor to mediate cellular functions. However, its role in development in vivo remains unknown. METHODS: Nulp1 (dNulp1) mutants are generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal. Expression of Wg target genes are analyzed by qRT-PCR. We use the Top-Flash luciferase reporter assay to response to Wg signaling. RESULTS: Here we show that Drosophila Nulp1 (dNulp1) mutants, generated by CRISPR/Cas9 targeting the Domain of Unknown Function (DUF654) in its C terminal, are partially homozygous lethal and the rare escapers have bent femurs, which are similar to the major manifestation of congenital bent-bone dysplasia in human Stuve-Weidemann syndrome. The fly phenotype can be rescued by dNulp1 over-expression, indicating that dNulp1 is essential for fly femur development and survival. Moreover, dNulp1 overexpression suppresses the notch wing phenotype caused by the overexpression of sgg/GSK3β, an inhibitor of the canonical Wnt cascade. Furthermore, qRT-PCR analyses show that seven target genes positively regulated by Wg signaling pathway are down-regulated in response to dNulp1 knockout, while two negatively regulated Wg targets are up-regulated in dNulp1 mutants. Finally, dNulp1 overexpression significantly activates the Top-Flash Wnt signaling reporter. CONCLUSION: We conclude that bHLH protein dNulp1 is essential for femur development and survival in Drosophila by acting as a positive cofactor in Wnt/Wingless signaling. |
---|