Cargando…

The Effect of Stents in Cerebral Aneurysms: A Review

The etiology of up to 95% of cerebral aneurysms may be accounted for by hemodynamically-induced factors that create vascular injury. The purpose of this review is to describe key physical properties that stents have and how they affect cerebral aneurysms. We performed a two-step screening process. F...

Descripción completa

Detalles Bibliográficos
Autores principales: Alkhalili, Kenan, Hannallah, Jack, Cobb, Mary, Chalouhi, Nohra, Philips, Jessica L., Echeverria, Angela B., Jabbour, Pascal, Babiker, M. Haithem, Frakes, David H., Gonzalez, L. Fernando
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898080/
https://www.ncbi.nlm.nih.gov/pubmed/29682009
http://dx.doi.org/10.4103/1793-5482.175639
Descripción
Sumario:The etiology of up to 95% of cerebral aneurysms may be accounted for by hemodynamically-induced factors that create vascular injury. The purpose of this review is to describe key physical properties that stents have and how they affect cerebral aneurysms. We performed a two-step screening process. First, a structured search was performed using the PubMed database. The following search terms and keywords were used: “Hemodynamics,” “wall shear stress (WSS),” “velocity,” “viscosity,” “cerebral aneurysm,” “intracranial aneurysm,” “stent,” “flow diverter,” “stent porosity,” “stent geometry,” “stent configuration,” and “stent design.” Reports were considered if they included original data, discussed hemodynamic changes after stent-based treatment of cerebral aneurysms, examined the hemodynamic effects of stent deployment, and/or described the geometric characteristics of both stents and the aneurysms they were used to treat. The search strategy yielded a total of 122 articles, 61 were excluded after screening the titles and abstracts. Additional articles were then identified by cross-checking reference lists. The final collection of 97 articles demonstrates that the geometric characteristics and configurations of deployed stents influenced hemodynamic parameters such as aneurysmal WSS, inflow, and pressure. The geometric characteristics of the aneurysm and its position also had significant influences on intra-aneurysmal hemodynamics after treatment. In conclusion, changes in specific aneurysmal hemodynamic parameters that result from stenting relate to a number of factors including the geometric properties and configurations of deployed stents, the geometric properties of the aneurysm, and the pretreatment hemodynamics.