Cargando…
ZFP36L2 is a cell cycle-regulated CCCH protein necessary for DNA lesion-induced S-phase arrest
ZFP36L2 promotes the destruction of AU-rich element-containing transcripts, while its regulation and functional significance in cell cycle control are scarcely identified. We show that ZFP36L2 is a cell cycle-regulated CCCH protein, the abundance of which is regulated post-translationally at the res...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Company of Biologists Ltd
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898266/ https://www.ncbi.nlm.nih.gov/pubmed/29449217 http://dx.doi.org/10.1242/bio.031575 |
Sumario: | ZFP36L2 promotes the destruction of AU-rich element-containing transcripts, while its regulation and functional significance in cell cycle control are scarcely identified. We show that ZFP36L2 is a cell cycle-regulated CCCH protein, the abundance of which is regulated post-translationally at the respective stages of the cell cycle. Indeed, ZFP36L2 protein was eliminated after release from M phase, and ZYG11B-based E3 ligase plays a role in its polyubiquitination in interphase. Although ZFP36L2 is dispensable for normal cell cycle progression, we found that endogenous ZFP36L2 played a key role in cisplatin-induced S-phase arrest, a process in which the suppression of G1/S cyclins is necessary. The accumulation of ZFP36L2 was stimulated under DNA replication stresses and altered interactions with a subset of RNA-binding proteins. Notably, silencing endogenous ZFP36L2 led to impaired cell viability in the presence of cisplatin-induced DNA lesions. Thus, we propose that ZFP36L2 is a key protein that controls S-phase progression in the case of genome instability. |
---|