Cargando…
Using machine learning techniques to develop forecasting algorithms for postoperative complications: protocol for a retrospective study
INTRODUCTION: Mortality and morbidity following surgery are pressing public health concerns in the USA. Traditional prediction models for postoperative adverse outcomes demonstrate good discrimination at the population level, but the ability to forecast an individual patient’s trajectory in real tim...
Autores principales: | Fritz, Bradley A, Chen, Yixin, Murray-Torres, Teresa M, Gregory, Stephen, Ben Abdallah, Arbi, Kronzer, Alex, McKinnon, Sherry Lynn, Budelier, Thaddeus, Helsten, Daniel L, Wildes, Troy S, Sharma, Anshuman, Avidan, Michael Simon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898287/ https://www.ncbi.nlm.nih.gov/pubmed/29643160 http://dx.doi.org/10.1136/bmjopen-2017-020124 |
Ejemplares similares
-
Ability of preoperative falls to predict postsurgical outcomes in non-selected patients undergoing elective surgery at an academic medical centre: protocol for a prospective cohort study
por: Kronzer, Vanessa L, et al.
Publicado: (2016) -
Protocol for an observational study of delirium in the post-anaesthesia care unit (PACU) as a potential predictor of subsequent postoperative delirium
por: Cui, Victoria, et al.
Publicado: (2017) -
Preoperative Falls Predict Postoperative Falls, Functional Decline, and Surgical Complications
por: Kronzer, Vanessa L., et al.
Publicado: (2016) -
Protocol for the perioperative outcome risk assessment with computer learning enhancement (Periop ORACLE) randomized study
por: Fritz, Bradley, et al.
Publicado: (2022) -
Obstructive sleep apnoea, positive airway pressure treatment and postoperative delirium: protocol for a retrospective observational study
por: King, Christopher R, et al.
Publicado: (2019)