Cargando…

Methods to Induce Chronic Ocular Hypertension: Reliable Rodent Models as a Platform for Cell Transplantation and Other Therapies

Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neurore...

Descripción completa

Detalles Bibliográficos
Autores principales: Dey, Ashim, Manthey, Abby L., Chiu, Kin, Do, Chi-Wai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5898687/
https://www.ncbi.nlm.nih.gov/pubmed/29637819
http://dx.doi.org/10.1177/0963689717724793
Descripción
Sumario:Glaucoma, a form of progressive optic neuropathy, is the second leading cause of blindness worldwide. Being a prominent disease affecting vision, substantial efforts are being made to better understand glaucoma pathogenesis and to develop novel treatment options including neuroprotective and neuroregenerative approaches. Cell transplantation has the potential to play a neuroprotective and/or neuroregenerative role for various ocular cell types (e.g., retinal cells, trabecular meshwork). Notably, glaucoma is often associated with elevated intraocular pressure, and over the past 2 decades, several rodent models of chronic ocular hypertension (COH) have been developed that reflect these changes in pressure. However, the underlying pathophysiology of glaucoma in these models and how they compare to the human condition remains unclear. This limitation is the primary barrier for using rodent models to develop novel therapies to manage glaucoma and glaucoma-related blindness. Here, we review the current techniques used to induce COH-related glaucoma in various rodent models, focusing on the strengths and weaknesses of the each, in order to provide a more complete understanding of how these models can be best utilized. To so do, we have separated them based on the target tissue (pre-trabecular, trabecular, and post-trabecular) in order to provide the reader with an encompassing reference describing the most appropriate rodent COH models for their research. We begin with an initial overview of the current use of these models in the evaluation of cell transplantation therapies.